Recently, several mass spectrometry methods have utilized protein structural stability for the quantitative study of protein-ligand engagement. These protein-denaturation approaches, which include thermal proteome profiling (TPP) and stability of proteins from rates of oxidation (SPROX), evaluate ligand-induced denaturation susceptibility changes with a MS-based readout. The different techniques of bottom-up protein-denaturation methods each have their own advantages and challenges.
View Article and Find Full Text PDFMolecular interactions between two different classes of β-lactamase enzymes and outer membrane protein A (OmpA) were studied by in vivo chemical cross-linking of a multi-drug-resistant strain of AB5075. Class A β-lactamase blaGES-11 and Class D β-lactamase Oxa23, responsible for hydrolysis of different types of β-lactam antibiotics, were found to be cross-linked to similar lysine sites of the periplasmic domain of outer membrane protein OmpA, despite low sequence homology between the two enzymes. The findings from in vivo XL-MS suggest that the interacting surfaces between both β-lactamase enzymes and OmpA are conserved during molecular evolution, and the OmpA C-terminus domain serves an important function of anchoring different types of β-lactamase enzymes in the periplasmic space.
View Article and Find Full Text PDFThis protocol describes a workflow for utilizing large-scale cross-linking with mass spectrometry (XL-MS) to make systems-level structural biology measurements in complex biological samples, including cells, isolated organelles, and tissue samples. XL-MS is a structural biology technique that provides information on the molecular structure of proteins and protein complexes using chemical probes that report the proximity of probe-reactive amino acids within proteins, typically lysine residues. Information gained through XL-MS studies is often complementary to more traditional methods, such as X-ray crystallography, nuclear magnetic resonance, and cryo-electron microscopy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2017
Multiple sclerosis (MS) is an autoimmune disease targeting the central nervous system (CNS) mainly in young adults, and a breakage of immune tolerance to CNS self-antigens has been suggested to initiate CNS autoimmunity. Age and microbial infection are well-known factors involved in the development of autoimmune diseases, including MS. Recent studies have suggested that alterations in the gut microbiota, referred to as dysbiosis, are associated with MS.
View Article and Find Full Text PDF