Fibroblast growth factor 2 (FGF2) is a signaling protein that plays a significant role in tissue development and repair. FGF2 binds to fibroblast growth factor receptors (FGFRs) alongside its co-factor heparin, which protects FGF2 from degradation. The binding between FGF2 and FGFRs induces intracellular signaling pathways such as RAS-MAPK, PI3K-AKT, and STAT.
View Article and Find Full Text PDFNanoLuc, a superior β-barrel fold luciferase, was engineered 10 years ago but the nature of its catalysis remains puzzling. Here experimental and computational techniques are combined, revealing that imidazopyrazinone luciferins bind to an intra-barrel catalytic site but also to an allosteric site shaped on the enzyme surface. Structurally, binding to the allosteric site prevents simultaneous binding to the catalytic site, and vice versa, through concerted conformational changes.
View Article and Find Full Text PDFHaloalkane dehalogenases (HLDs) are a family of α/β-hydrolase fold enzymes that employ S2 nucleophilic substitution to cleave the carbon-halogen bond in diverse chemical structures, the biological role of which is still poorly understood. Atomic-level knowledge of both the inner organization and supramolecular complexation of HLDs is thus crucial to understand their catalytic and noncatalytic functions. Here, crystallographic structures of the (S)-enantioselective haloalkane dehalogenase DmmarA from the waterborne pathogenic microbe Mycobacterium marinum were determined at 1.
View Article and Find Full Text PDFThermostability is an essential requirement for the use of enzymes in the bioindustry. Here, we compare different protein stabilization strategies using a challenging target, a stable haloalkane dehalogenase DhaA115. We observe better performance of automated stabilization platforms FireProt and PROSS in designing multiple-point mutations over the introduction of disulfide bonds and strengthening the intra- and the inter-domain contacts by saturation mutagenesis.
View Article and Find Full Text PDFHaloalkane dehalogenase (HLD) enzymes employ an S 2 nucleophilic substitution mechanism to erase halogen substituents in diverse organohalogen compounds. Subfamily I and II HLDs are well-characterized enzymes, but the mode and purpose of multimerization of subfamily III HLDs are unknown. Here we probe the structural organization of DhmeA, a subfamily III HLD-like enzyme from the archaeon Haloferax mediterranei, by combining cryo-electron microscopy (cryo-EM) and x-ray crystallography.
View Article and Find Full Text PDFDesigning a composite, possibly strengthened by a dispersion of (fine) oxides, is a favorable way to improve the mechanical characteristics of Cu while maintaining its advantageous electric conductivity. The aim of this study was to perform mechanical alloying of a Cu powder with a powder of AlO oxide, seal the powder mixture into evacuated Cu tubular containers, i.e.
View Article and Find Full Text PDFBackground: Apolipoprotein E (ApoE) ε4 genotype is the most prevalent risk factor for late-onset Alzheimer's Disease (AD). Although ApoE4 differs from its non-pathological ApoE3 isoform only by the C112R mutation, the molecular mechanism of its proteinopathy is unknown.
Methods: Here, we reveal the molecular mechanism of ApoE4 aggregation using a combination of experimental and computational techniques, including X-ray crystallography, site-directed mutagenesis, hydrogen-deuterium mass spectrometry (HDX-MS), static light scattering and molecular dynamics simulations.
Intrinsic protein dynamics contribute to their biological functions. Rational engineering of protein dynamics is extremely challenging with only a handful of successful examples. Hydrogen/deuterium exchange coupled to mass spectrometry (HDX-MS) represents a powerful technique for quantitative analysis of protein dynamics.
View Article and Find Full Text PDFHere, we describe a combined in cellulo and in vivo approach to identify compounds with higher potential for efficient inhibition of Trypanosoma cruzi. Phase I of in cellulo assays is designed to exclude inactive or toxic compounds, while phase II is designed for accurate IC, CC, and selective index (SI) determination. Compounds showing high SI are tested using in vivo infection models in parallel with benznidazole to assess their efficacy relative to a reference drug used for Chagas disease treatment.
View Article and Find Full Text PDFStroke burden is substantially increasing but current therapeutic drugs are still far from ideal. Here we highlight the vast potential of staphylokinase as an efficient, fibrin-selective, inexpensive, and evolvable thrombolytic agent. The emphasis is escalated by new recent findings.
View Article and Find Full Text PDFAlthough the link between microbial infections and Alzheimer's disease (AD) has been demonstrated in multiple studies, the involvement of pathogens in the development of AD remains unclear. Here, we investigated the frequency of the 10 most commonly cited viral (HSV-1, EBV, HHV-6, HHV-7, and CMV) and bacterial (Chlamydia pneumoniae, Helicobacter pylori, Borrelia burgdorferi, Porphyromonas gingivalis, and Treponema spp.) pathogens in serum, cerebrospinal fluid (CSF) and brain tissues of AD patients.
View Article and Find Full Text PDFHaloTag labeling technology has introduced unrivaled potential in protein chemistry and molecular and cellular biology. A wide variety of ligands have been developed to meet the specific needs of diverse applications, but only a single protein tag, DhaAHT, is routinely used for their incorporation. Following a systematic kinetic and computational analysis of different reporters, a tetramethylrhodamine- and three 4-stilbazolium-based fluorescent ligands, we showed that the mechanism of incorporating different ligands depends both on the binding step and the efficiency of the chemical reaction.
View Article and Find Full Text PDFThis protocol outlines a new genetic complementation strategy to investigate gene function in , the parasite causing Chagas disease. We combine CRISPR-Cas9 technology with recombination of variants of the target gene containing the desired mutations that are resistant to Cas9-cleavage, which enables detailed investigation of protein function. This experimental strategy overcomes some of the limitations associated with gene knockouts in .
View Article and Find Full Text PDFComput Struct Biotechnol J
March 2022
Cardio- and cerebrovascular diseases are leading causes of death and disability, resulting in one of the highest socio-economic burdens of any disease type. The discovery of bacterial and human plasminogen activators and their use as thrombolytic drugs have revolutionized treatment of these pathologies. Fibrin-specific agents have an advantage over non-specific factors because of lower rates of deleterious side effects.
View Article and Find Full Text PDFThis study aims to characterize the correlations between electric characteristics and selected structural features of newly designed Al/Cu laminated conductors manufactured via room temperature rotary swaging. After swaging, the laminates with diameters of 15 mm were subjected to two different post-process annealing treatments. Structure analyses performed to evaluate the effects of thermomechanical processing were performed via scanning and transmission electron microscopies.
View Article and Find Full Text PDFWriting and erasing of posttranslational modifications are crucial to phenotypic plasticity and antigenic variation of eukaryotic pathogens. Targeting pathogens' modification machineries, thus, represents a valid approach to fighting parasitic diseases. However, identification of parasitic targets and the development of selective anti-parasitic drugs still represent major bottlenecks.
View Article and Find Full Text PDFProtein dynamics are often invoked in explanations of enzyme catalysis, but their design has proven elusive. Here we track the role of dynamics in evolution, starting from the evolvable and thermostable ancestral protein Anc which catalyses both dehalogenase and luciferase reactions. Insertion-deletion (InDel) backbone mutagenesis of Anc challenged the scaffold dynamics.
View Article and Find Full Text PDFComputational design of protein catalysts with enhanced stabilities for use in research and enzyme technologies is a challenging task. Using force-field calculations and phylogenetic analysis, we previously designed the haloalkane dehalogenase DhaA115 which contains 11 mutations that confer upon it outstanding thermostability ( = 73.5 °C; Δ > 23 °C).
View Article and Find Full Text PDFThe article deals with the analysis of chromium layer grinding on a steel substrate, where this issue was addressed with regard to the requirements of the manufacturing sector, specifically in the aerospace industry. The experimental samples were chromium-plated and ground under different cutting conditions by the grooving method of grinding. Two types of grinding wheels for grinding were used, grinding wheel based on SG (solgel) a grinding wheel based on SiC.
View Article and Find Full Text PDFPost-transcriptional modification of tRNA wobble adenosine into inosine is crucial for decoding multiple mRNA codons by a single tRNA. The eukaryotic wobble adenosine-to-inosine modification is catalysed by the ADAT (ADAT2/ADAT3) complex that modifies up to eight tRNAs, requiring a full tRNA for activity. Yet, ADAT catalytic mechanism and its implication in neurodevelopmental disorders remain poorly understood.
View Article and Find Full Text PDFAncestral sequence reconstruction is a powerful method for inferring ancestors of modern enzymes and for studying structure-function relationships of enzymes. We have previously applied this approach to haloalkane dehalogenases (HLDs) from the subfamily HLD-II and obtained thermodynamically highly stabilized enzymes (Δ up to 24 °C), showing improved catalytic properties. Here we combined crystallographic structural analysis and computational molecular dynamics simulations to gain insight into the mechanisms by which ancestral HLDs became more robust enzymes with novel catalytic properties.
View Article and Find Full Text PDFEngineering enzyme catalytic properties is important for basic research as well as for biotechnological applications. We have previously shown that the reshaping of enzyme access tunnels via the deletion of a short surface loop element may yield a haloalkane dehalogenase variant with markedly modified substrate specificity and enantioselectivity. Here, we conversely probed the effects of surface loop-helix transplantation from one enzyme to another within the enzyme family of haloalkane dehalogenases.
View Article and Find Full Text PDFWe developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced values, which resembles the effect of thioamide substitution in metallo-protease substrates.
View Article and Find Full Text PDFThe only drug currently available for treatment of the neglected disease Schistosomiasis is Praziquantel, and the possible emergence of resistance makes research on novel therapeutic agents necessary and urgent. To this end, the targeting of epigenetic enzymes, which regulate the parasitic life cycle, emerged as a promising approach. Due to the strong effects of human sirtuin inhibitors on parasite survival and reproduction, sirtuins were postulated as potential therapeutic targets.
View Article and Find Full Text PDF