The demand for lithium-ion batteries (LIBs) has dramatically increased in recent years due to their application in various electronic devices and electric vehicles (EVs). Great amount of LIB waste is generated, most of which ends up in landfills. LIB wastes contain substantial amounts of critical metals (such as Li, Co, Ni, Mn, and Cu) and can therefore serve as valuable secondary sources of these metals.
View Article and Find Full Text PDFMetal recycling is essential for strengthening a circular economy. Microbial leaching (bioleaching) is an economical and environmentally friendly technology widely used to extract metals from insoluble ores or secondary resources such as dust, ashes, and slags. On the other hand, microbial electrolysis cells (MECs) would offer an energy-efficient application for recovering valuable metals from an aqueous solution.
View Article and Find Full Text PDFThe recent revision of the Acidithiobacillia class using genomic taxonomy methods has shown that, in addition to the existence of previously unrecognized genera and species, some species of the class harbor levels of divergence that are congruent with ongoing differentiation processes. In this study, we have performed a subspecies-level analysis of sequenced strains of Acidithiobacillus ferrooxidans to prove the existence of distinct sublineages and identify the discriminant genomic/genetic characteristics linked to these sublineages, and to shed light on the processes driving such differentiation. Differences in the genomic relatedness metrics, levels of synteny, gene content, and both integrated and episomal mobile genetic elements (MGE) repertoires support the existence of two subspecies-level taxa within A.
View Article and Find Full Text PDFHydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on growing on hydrogen, and a respiratory model was proposed.
View Article and Find Full Text PDFHazardous waste disposal via incineration generates a substantial amount of ashes and slags which pose an environmental risk due to their toxicity. Currently, these residues are deposited in landfills with loss of potentially recyclable raw material. In this study, the use of acidophilic bioleaching bacteria (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans) as an environmentally friendly, efficient strategy for the recovery of valuable metals from incineration residues was investigated.
View Article and Find Full Text PDFAccording to the literature, pyrite (FeS) oxidation has been previously determined to involve thiosulfate as the first aqueous intermediate sulfur product, which is further oxidized to sulfate. In the present study, pyrite oxidation by was studied using electrochemical and metabolic approaches in an effort to extend existing knowledge on the oxidation mechanism. Due to the small surface area, the reaction rate of a compact pyrite electrode in the form of polycrystalline pyrite aggregate in suspension was very slow at a spontaneously formed high redox potential.
View Article and Find Full Text PDFIn extremely acidic environments, ferric iron can be a thermodynamically favorable electron acceptor during elemental sulfur oxidation by some Acidithiobacillus spp. under anoxic conditions. Quantitative 2D-PAGE proteomic analysis of a resting cell suspension of a sulfur-grown Acidithiobacillus ferrooxidans CCM 4253 subculture that had lost its iron-reducing activity revealed 147 protein spots that were downregulated relative to an iron-reducing resting cell suspension of the antecedent sulfur-oxidizing culture and 111 that were upregulated.
View Article and Find Full Text PDFTo clarify the pathway of anaerobic sulfur oxidation coupled with dissimilatory ferric iron reduction in Acidithiobacillus ferrooxidans strain CCM 4253 cells, we monitored their energy metabolism gene transcript profiles. Several genes encoding electron transporters involved in aerobic iron and sulfur respiration were induced during anaerobic growth of ferrous iron-grown cells. Most sulfur metabolism genes were either expressed at the basal level or their expression declined.
View Article and Find Full Text PDFIn contrast to iron-oxidizing Acidithiobacillus ferrooxidans, A. ferrooxidans from a stationary phase elemental sulfur-oxidizing culture exhibited a lag phase in pyrite oxidation, which is similar to its behaviour during ferrous iron oxidation. The ability of elemental sulfur-oxidizing A.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
May 2012
The conventional stoichiometry of the oxidation of elemental sulfur by ferric iron in Acidithiobacillus ferrooxidans was not in agreement with our experimental data in terms of ferrous iron and proton formation. Reaction modelling under the actual conditions of bacterial activity resulted in a different stoichiometry, where additional iron species participate in the process to affect the number of released protons. The suggested reaction equation may more accurately predict the intensity of environmental acidification during the anaerobic bioprocess.
View Article and Find Full Text PDFElemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans was investigated. The apparent Michaelis constant for ferric iron was 18.6 mM.
View Article and Find Full Text PDFAppl Environ Microbiol
June 2007
Wide ranges of growth yields on sulfur (from 2.4 x 10(10) to 8.1 x 10(11) cells g(-1)) and maximum sulfur oxidation rates (from 0.
View Article and Find Full Text PDFA comparative analysis of the protein composition of Acidithiobacillus ferrooxidans cells grown on elemental sulfur and ferrous iron was performed. A newly developed protocol involving immobilized pH gradients, improved protein reduction, mass spectrometry protein identification and full genome sequence information was applied. This approach resulted in more than 1300 protein spots displayed in broad and basic pH ranges, the best A.
View Article and Find Full Text PDFThree matrices were used for immobilizing the cytochrome c: Sepharose CL-4B, Silasorb SPH amine and a laboratory-prepared new matrix based on crosslinked triazine (2,4,6-tris(aminoethylamine)-1,3,5-triazine) (TAT). Cytochrome c was immobilized on the matrices by several procedures and the amount of incorporated cytochrome c was determined. Cytochrome c immobilized on Sepharose CL-4B with periodate activation, cytochrome c immobilized on Silasorb-amine with carbodiimide activation and cytochrome c immobilized on crosslinked triazine were suitable for purification of thiosulfate dehydrogenase from Acidithiobacillus ferrooxidans.
View Article and Find Full Text PDFThe kinetics of sulfur oxidation by Acidithiobacillus ferrooxidans in shaking flasks and a 10-L reactor was studied. The observed linearity of growth and sulfur oxidation was explained by sulfur limitation. Total cell yield was not significantly different for exponential growth as compared to growth during the sulfur-limiting phase.
View Article and Find Full Text PDF