Publications by authors named "Martin Maldovan"

We study the thermal conductivity of diameter-modulated Si nanowires to understand the impact of different nanoscale transport mechanisms as a function of nanowire morphology. Our investigation couples transient suspended microbridge measurements of diameter-modulated Si nanowires synthesized via vapor-liquid-solid growth and dopant-selective etching with predictive Boltzmann transport modeling. We show that the presence of a low thermal conductivity phase (i.

View Article and Find Full Text PDF

Being able to achieve extremely low thermal conductivities is of fundamental importance as well as of practical interest for thermal energy conversion and storage materials. By incorporating backscattering effects on thermal phonon transport, here we introduce a new lower limit for the thermal conductivities of nanoscale engineered materials. Our formulation shows that surface backscattering allows to reach a minimum limit for thermal energy transport at the nanoscale, achieving thermal conductivities which are orders of magnitude smaller than those obtained with classical approaches.

View Article and Find Full Text PDF

Thermal conduction in semiconductor nanowires is controlled by the transport of atomic vibrations also known as thermal phonons. The ability of nanowires to tailor the transport of thermal phonons stems from their precise atomic scale growth coupled with high structural surface to volume ratios. Understanding and manipulating thermal transport properties at the nanoscale is central for progress in the fields of microelectronics, optoelectronics, and thermoelectrics.

View Article and Find Full Text PDF

Thermal management is a crucial component in analyzing the performance of III-V semiconductor superlattice-based optoelectronic devices. Here we provide a rigorous physical analysis of cross-plane thermal conduction in GaAs/AlAs and their alloy-based superlattices while rigorously accounting for phonon interlayer coupling and interfacial structural characteristics. We present a comprehensive study of superlattice thermal transport, including structure-property relations, spectral and modal descriptions, and contrast it with in-plane heat conduction thereby explaining the resultant anisotropy in III-V semiconductor superlattices.

View Article and Find Full Text PDF

A comprehensive rational thermal material design paradigm requires the ability to reduce and enhance the thermal conductivities of nanomaterials. In contrast to the existing ability to reduce the thermal conductivity, methods that allow to enhance heat conduction are currently limited. Enhancing the nanoscale thermal conductivity could bring radical improvements in the performance of electronics, optoelectronics, and photovoltaic systems.

View Article and Find Full Text PDF

Thermal transport at small length scales has attracted significant attention in recent years and various experimental and theoretical methods have been developed to establish the reduced thermal conductivity. The fundamental understanding of how phonons move and the physical mechanisms behind nanoscale thermal transport, however, remains poorly understood. Here we move beyond thermal conductivity calculations and provide a rigorous and comprehensive physical description of thermal phonon transport in superlattices by solving the Boltzmann transport equation and using the Beckman-Kirchhoff surface scattering theory with shadowing to precisely describe phonon-surface interactions.

View Article and Find Full Text PDF

Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths in Si and SiGe nanowires. We present a rigorous and accurate description of phonon scattering at surfaces and predict and analyse nanowire heat spectra for different diameters and surface conditions.

View Article and Find Full Text PDF

Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion.

View Article and Find Full Text PDF

Wave interference modifies phonon velocities and density of states, and in doing so creates forbidden energy bandgaps for thermal phonons. Materials that exhibit wave interference effects allow the flow of thermal energy to be manipulated by controlling the material's thermal conductivity or using heat mirrors to reflect thermal vibrations. The technological potential of these materials, such as enhanced thermoelectric energy conversion and improved thermal insulation, has fuelled the search for highly efficient phonon wave interference and thermal bandgap materials.

View Article and Find Full Text PDF

The engineering of optical and acoustic material functionalities via construction of ordered local and global architectures on various length scales commensurate with and well below the characteristic length scales of photons and phonons in the material is an indispensable and powerful means to develop novel materials. In the current mature status of photonics, polymers hold a pivotal role in various application areas such as light-emission, sensing, energy, and displays, with exclusive advantages despite their relatively low dielectric constants. Moreover, in the nascent field of phononics, polymers are expected to be a superior material platform due to the ability for readily fabricated complex polymer structures possessing a wide range of mechanical behaviors, complete phononic bandgaps, and resonant architectures.

View Article and Find Full Text PDF

The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat.

View Article and Find Full Text PDF

By transforming heat flux from particle to wave phonon transport, we introduce a new class of engineered material to control thermal conduction. We show that rationally designed nanostructured alloys can lead to a fundamental new approach for thermal management, guiding heat as photonic and phononic crystals guide light and sound, respectively. Novel applications for these materials include heat waveguides, thermal lattices, heat imaging, thermo-optics, thermal diodes, and thermal cloaking.

View Article and Find Full Text PDF

Certain periodic dielectric structures can prohibit the propagation of light for all directions within a frequency range. These 'photonic crystals' allow researchers to modify the interaction between electromagnetic fields and dielectric media from radio to optical wavelengths. Their technological potential, such as the inhibition of spontaneous emission, enhancement of semiconductor lasers, and integration and miniaturization of optical components, makes the search for an easy-to-craft photonic crystal with a large bandgap a major field of study.

View Article and Find Full Text PDF

The promise of photonic crystals and their potential applications has attracted considerable attention towards the establishment of periodic dielectric structures that in addition to possessing robust complete bandgaps, can be easily fabricated with current techniques. A number of theoretical structures have been proposed. To date, the best complete photonic bandgap structure is that of diamond networks having Fd3m symmetry (2-3 gap).

View Article and Find Full Text PDF

Interference lithography holds the promise of fabricating large-area, defect-free photonic structures on the sub-micrometer scale both rapidly and cheaply. There is a need for a procedure to establish a connection between the structures that are formed and the parameters of the interfering beams. There is also a need to produce self-supporting three-dimensional bicontinuous structures.

View Article and Find Full Text PDF