We examine methods for calculating the effective mobilities of molecules driven through periodic geometries in the context of particle-based simulation. The standard formulation of the mobility, based on the long-time limit of the mean drift velocity, is compared to a formulation based on the mean first-passage time of molecules crossing a single period of the system geometry. The equivalence of the two definitions is derived under weaker assumptions than similar conclusions obtained previously, requiring only that the state of the system at subsequent period crossings satisfy the Markov property.
View Article and Find Full Text PDFThis study presents deep neural network solutions to a time-integrated Smoluchowski equation modeling the mean first passage time of nanoparticles traversing the slit-well microfluidic device. This physical scenario is representative of a broader class of parametrized first passage problems in which key output metrics are dictated by a complicated interplay of problem parameters and system geometry. Specifically, whereas these types of problems are commonly studied using particle simulations of stochastic differential equation models, here the corresponding partial differential equation model is solved using a method based on deep neural networks.
View Article and Find Full Text PDFElucidating the kinetics of DNA passage through a solid-state nanopore is a fertile field of research, and mechanisms for controlling capture, passage, and trapping of biopolymers are likely to find numerous technological applications. Here we present a nanofiltered nanopore device, which forms an entropic cage for DNA following first passage through the nanopore, trapping the translocated DNA and permitting recapture for subsequent reanalysis and investigation of kinetics of passage under confinement. We characterize the trapping properties of this nanodevice by driving individual DNA polymers into the nanoscale gap separating the nanofilter and the pore, forming an entropic cage similar to a "two pores in series" device, leaving polymers to diffuse in the cage for various time lengths, and attempting to recapture the same molecule.
View Article and Find Full Text PDFIn this work, we investigated whether a series of nanopores connected by channels can be used to separate polymer mixtures by molecular size. We conducted multiscale coarse-grained simulations of semiflexible polymers driven through such a device. Polymers were modelled as chains of beads near the nanopores and as single particles in the bulk of the channels.
View Article and Find Full Text PDFTo reduce unwanted variation in the passage speed of DNA through solid-state nanopores, we demonstrate nanoscale preconfinement of translocating molecules using an ultrathin nanoporous silicon nitride membrane separated from a single sensing nanopore by a nanoscale cavity. We present comprehensive experimental and simulation results demonstrating that the presence of an integrated nanofilter within nanoscale distances of the sensing pore eliminates the dependence of molecular passage time distributions on pore size, revealing a global minimum in the coefficient of variation of the passage time. These results provide experimental verification that the inter- and intramolecular passage time variation depends on the conformational entropy of each molecule prior to translocation.
View Article and Find Full Text PDFThe translocation of polymers through nanopores with large internal cavities bounded by two narrow pores is studied via Langevin dynamics simulations. The total translocation time is found to be a nonmonotonic function of polymer length, reaching a minimum at intermediate length, with both shorter and longer polymers taking longer to translocate. The location of the minimum is shown to shift with the magnitude of the applied force, indicating that the pore can be dynamically tuned to favor different polymer lengths.
View Article and Find Full Text PDF