Publications by authors named "Martin M Corcoran"

Recognition of antigens by T cell receptors (TCRs) and B cell receptors (BCRs) is a key step in lymphocyte activation. T and B cells mediate adaptive immune responses, which protect us against infections and provide immunological memory, and also, in some instances, drive pathogenic responses in autoimmune diseases. TCRs and BCRs are encoded within loci that are known to be genetically diverse.

View Article and Find Full Text PDF
Article Synopsis
  • - Vaccine priming using germline-targeting immunogens could enhance the development of precision vaccines for serious human diseases, as shown in a clinical trial of eOD-GT8 60mer.
  • - The trial found that participants receiving a higher vaccine dose had more VRC01-class bnAb-precursor B cells compared to those receiving a lower dose, but the differences were primarily linked to their IGHV1-2 genotypes.
  • - The study highlights the importance of understanding genetic variations in immune response (specifically immunoglobulin alleles) when creating and testing new vaccines in clinical settings.
View Article and Find Full Text PDF

We present a new Rep-Seq analysis tool called , for analyzing genotypic variation in immunoglobulin (IG) and T cell receptor (TCR) genes. is highly efficient at identifying V alleles, including those that are infrequently used in expressed repertoires and those that contain 3' end variation that are otherwise refractory to reliable identification during germline inference from expressed libraries. Furthermore, facilitates accurate D and J gene genotyping.

View Article and Find Full Text PDF
Article Synopsis
  • Vaccine priming immunogens that target specific immune responses show potential for creating effective vaccines against major diseases.
  • A clinical trial of the eOD-GT8 60mer found that participants receiving a higher dose had more B cells related to broadly neutralizing antibodies (bnAbs) than those on a lower dose.
  • The differences in response were more linked to genetic variations in immunoglobulin alleles among participants than to the vaccine dose, highlighting the importance of considering genetic diversity in vaccine design and testing.
View Article and Find Full Text PDF

Immunoglobulin heavy chain (IGH) germline gene variations influence the B cell receptor repertoire, with resulting biological consequences such as shaping our response to infections and altering disease susceptibilities. However, the lack of information on polymorphism frequencies in the IGH loci at the population level makes association studies challenging. Here, we genotyped a pilot group of 30 individuals with rheumatoid arthritis (RA) to examine IGH allele content and frequencies in this group.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) can protect against HIV infection but have not been induced by human vaccination. A key barrier to bnAb induction is vaccine priming of rare bnAb-precursor B cells. In a randomized, double-blind, placebo-controlled phase 1 clinical trial, the HIV vaccine-priming candidate eOD-GT8 60mer adjuvanted with AS01 had a favorable safety profile and induced VRC01-class bnAb precursors in 97% of vaccine recipients with median frequencies reaching 0.

View Article and Find Full Text PDF

Immunogenomics studies have been largely limited to individuals of European ancestry, restricting the ability to identify variation in human adaptive immune responses across populations. Inclusion of a greater diversity of individuals in immunogenomics studies will substantially enhance our understanding of human immunology.

View Article and Find Full Text PDF

Rare mutations have been proposed to restrict the development of broadly neutralizing antibodies against HIV-1, but this has not been explicitly demonstrated. We hypothesized that such rare mutations might be identified by comparing broadly neutralizing and non-broadly neutralizing branches of an antibody-developmental tree. Because sequences of antibodies isolated from the fusion peptide (FP)-targeting VRC34-antibody lineage suggested it might be suitable for such rare mutation analysis, we carried out next-generation sequencing (NGS) on B cell transcripts from donor N123, the source of the VRC34 lineage, and functionally and structurally characterized inferred intermediates along broadly neutralizing and poorly neutralizing developmental branches.

View Article and Find Full Text PDF

The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains.

View Article and Find Full Text PDF

Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%.

View Article and Find Full Text PDF

The microRNAs miR-15a and miR-16-1 are downregulated in multiple tumor types and are frequently deleted in chronic lymphocytic leukemia (CLL), myeloma and mantle cell lymphoma. Despite their abundance in most cells the transcriptional regulation of miR-15a/16-1 remains unclear. Here we demonstrate that the putative tumor suppressor DLEU2 acts as a host gene of these microRNAs.

View Article and Find Full Text PDF

Our group previously identified two novel genes, RFP2/LEU5 and DLEU2, within a 13q14.3 genomic region of loss seen in various malignancies. However, no specific inactivating mutations were found in these or other genes in the vicinity of the deletion, suggesting that a nonclassical tumor-suppressor mechanism may be involved.

View Article and Find Full Text PDF

The 8p11 myeloproliferative syndrome (EMS) is an aggressive hematological malignancy caused by the fusion of diverse partner genes to fibroblast growth factor receptor 1 (FGFR1). The partner proteins promote dimerization and ligand-independent activation of FGFR1-encoded tyrosine kinase, deregulating hemopoiesis in a manner analogous to BCR-ABL in chronic myeloid leukemia. Here, we describe the identification of a new FGFR1 fusion gene in a patient who presented with T-cell lymphoblastic lymphoma in conjunction with an acquired ins(12;8)(p11;p11p22).

View Article and Find Full Text PDF

Deletion of chromosome 13q14 is the most frequent genetic aberration in B-cell chronic lymphocytic leukemia (CLL), found in more than 50% of cases, indicating that this region contains a gene(s) involved in the development of CLL. However, the pathogenic gene in the critical 13q14 region has not yet been defined. Here, we have cloned and characterized a novel gene, DLEU7, located adjacent to the consensus deleted region, and overlapping the 3' end of DLEU1 tail to tail.

View Article and Find Full Text PDF

This study evaluates the prognostic significance of genetic abnormalities (detected at or shortly after presentation), clinical stage, lymphocyte morphology, CD38 expression, and IGVH gene status in 205 patients with chronic lymphocytic leukemia (B-CLL). Deletion of chromosome 11q23, absence of a deletion of chromosome 13q14, atypical lymphocyte morphology, and more than 30% CD38 expression are significantly associated with the presence of unmutated IGVH genes. Advanced stage, male sex, atypical morphology, more than 30% CD38 expression, trisomy 12, deletion of chromosome 11q23, loss or mutation of the p53 gene, and unmutated IGVH genes are all poor prognostic factors in a univariate analysis.

View Article and Find Full Text PDF