Publications by authors named "Martin Luettich"

In the absence of epidemiological data, there is a need to develop computational models that convert in vitro findings to human disease risk predictions following toxicant exposure. In such efforts, in vitro data can be evaluated in the context of adverse outcome pathways (AOPs) that organize mechanistic knowledge based on empirical evidence into a sequence of molecular-, cellular-, tissue-, and organ-level key events that precede an adverse outcome (AO). Here we combined data from advanced in vitro organotypic airway models exposed to combustible cigarette (CC) smoke or Tobacco Heating System (THS) aerosol with an AOP for increased oxidative stress leads to decreased lung function.

View Article and Find Full Text PDF
Article Synopsis
  • A/J mice are commonly used in research to study lung tumor formation and progression, revealing challenges in distinguishing between lung tumors caused by cigarette smoke and those that occur spontaneously with age.
  • An 18-month study compared exposure to tobacco heating systems and conventional cigarette smoke, leading to the development of a 13-gene signature that effectively differentiated between tumors caused by smoke exposure and spontaneous tumors in mice.
  • This gene signature not only proved effective in mouse models but also showed potential for human application by distinguishing between lung cancer in smokers and non-smokers, which could help identify patients who would benefit from targeted treatments.
View Article and Find Full Text PDF

Smoking cessation is the most effective measure for reducing the risk of smoking-related diseases. However, switching to less harmful products (modified-risk tobacco products [MRTP]) can be an alternative to help reduce the risk for adult smokers who would otherwise continue to smoke. In an 18-month chronic carcinogenicity/toxicity study in A/J mice (OECD Test Guideline 453), we assessed the aerosol of Tobacco Heating System 2.

View Article and Find Full Text PDF

Smoking cigarettes is harmful to the cardiovascular system. Considerable attention has been paid to the reduced harm potential of alternative nicotine-containing inhalable products such as e-cigarettes. We investigated the effects of E-vapor aerosols or cigarette smoke (CS) on atherosclerosis progression, cardiovascular function, and molecular changes in the heart and aorta of female apolipoprotein E-deficient (ApoE) mice.

View Article and Find Full Text PDF

Mucociliary clearance (MCC), considered as a collaboration of mucus secreted from goblet cells, the airway surface liquid layer, and the beating of cilia of ciliated cells, is the airways' defense system against airborne contaminants. Because the process is well described at the molecular level, we gathered the available information into a suite of comprehensive causal biological network (CBN) models. The suite consists of three independent models that represent (1) cilium assembly, (2) ciliary beating, and (3) goblet cell hyperplasia/metaplasia and that were built in the Biological Expression Language, which is both human-readable and computable.

View Article and Find Full Text PDF

To more accurately model inhalation toxicity in vitro, we developed a tetra-culture system that combines lung alveolar epithelial cells, endothelial cells, macrophages, and mast cells in a three-dimensional orientation. We characterized the influence of the added complexity using network perturbation analysis and gene expression data. This will allow us to gain insight into the steady-state profile of the assembled, complete three-dimensional model using all four cell types and of simpler models of one, two, or three cell types.

View Article and Find Full Text PDF

Cigarette smoking is the leading cause of preventable lung cancer (LC). Reduction of harmful constituents by heating rather than combusting tobacco may have the potential to reduce the risk of LC. We evaluated functional and molecular changes in human bronchial epithelial BEAS-2B cells following a 12-week exposure to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product (cMRTP) in comparison with those following exposure to TPM from the 3R4F reference cigarette.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is one of the major causes of chronic morbidity and mortality worldwide. The development of markers of COPD onset is hampered by the lack of accessibility to the primary target tissue, and there is a need to consider other sample sources as surrogates for biomarker research. Airborne toxicants pass through the nasal epithelium before reaching the lower airways, and the similarity with bronchial histology makes it an attractive surrogate for lower airways.

View Article and Find Full Text PDF

Smoking is a major risk factor for several diseases including chronic obstructive pulmonary disease (COPD). To better understand the systemic effects of cigarette smoke exposure and mild to moderate COPD-and to support future biomarker development-we profiled the serum lipidomes of healthy smokers, smokers with mild to moderate COPD (GOLD stages 1 and 2), former smokers, and never-smokers ( = 40 per group) (ClinicalTrials.gov registration: NCT01780298).

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is one of the most prevalent lung diseases. Cigarette smoking is the main risk factor for COPD. In this parallel-group clinical study we investigated to what extent the transitions in a chronic-exposure-to-disease model are reflected in the proteome and cellular transcriptome of induced sputum samples.

View Article and Find Full Text PDF

The A/J mouse is highly susceptible to lung tumor induction and has been widely used as a screening model in carcinogenicity testing and chemoprevention studies. However, the A/J mouse model has several disadvantages. Most notably, it develops lung tumors spontaneously.

View Article and Find Full Text PDF

Peptide nucleic acid technology (PNA) has become an extremely useful tool and promises to impact on molecular biology and diagnostics. These synthetic DNA analogues pair with DNA and RNA molecules according to Watson and Crick base pairing rules. This paper describes a sensitive and quick fluorescent in situ hybridisation (ISH) technique to determine DNA telomere repeat sequences (TTA GGG)n using epifluorescence microscopy.

View Article and Find Full Text PDF