Background: Recent advances in the development of enzyme cocktails for degradation of lignocellulosic biomass, especially the discovery of lytic polysaccharide monooxygenases (LPMOs), have opened new perspectives for process design and optimization. Softwood biomass is an abundant resource in many parts of the world, including Scandinavia, but efficient pretreatment and subsequent enzymatic hydrolysis of softwoods are challenging. Sulfite pulping-based pretreatments, such as in the BALI™ process, yield substrates that are relatively easy to degrade.
View Article and Find Full Text PDFDespite recent progress, saccharification of lignocellulosic biomass is still a major cost driver in biorefining. In this study, we present the development of minimal enzyme cocktails for hydrolysis of Norway spruce and sugarcane bagasse, which were pretreated using the so-called BALI™ process, which is based on sulfite pulping technology. Minimal enzyme cocktails were composed using several glycoside hydrolases purified from the industrially relevant filamentous fungus Trichoderma reesei and a purified commercial β-glucosidase from Aspergillus niger.
View Article and Find Full Text PDFProtonation of (N-N)PtPh(2) (1; N-N = diimine ArN=CMe-CMe=NAr with Ar = 2,6-Me(2)C(6)H(3) (a), 2,4,6-Me(3)C(6)H(2) (b), 4-Br-2,6-Me(2)C(6)H(2) (c), 3,5-Me(2)C(6)H(3) (d), and 4-CF(3)C(6)H(4) (e)) in the presence of MeCN at ambient temperature generates (N-N)Pt(Ph)(NCMe)(+) (2). At -78 degrees C, protonation of 1a yielded (N-N)PtPh(2)(H)(NCMe)(+) (3a), which produced benzene and 2a at ca. -40 degrees C.
View Article and Find Full Text PDFProtonolysis of (diimine)PtMe2 (1) complexes in CD2Cl2 containing CD3CN at -78 degrees C yields (diimine)PtMe2(H)(NCCD3)+ (4), (diimine)PtMe(NCCD3)+ (5), and methane. The relative yields of 5 and methane decrease with increasing concentrations of CD3CN. This is consistent with protonation of 1 occurring directly at the metal, rather than at a methyl group.
View Article and Find Full Text PDF