Publications by authors named "Martin Lepsik"

Rhomboid proteases play a variety of physiological roles, but rhomboid protease inhibitors have been mostly developed for the model rhomboid GlpG. In this work, we screened different electrophilic scaffolds against the human mitochondrial rhomboid PARL and found 4-oxo-β-lactams as submicromolar inhibitors. Multifaceted computations suggest explanations for the activity at the molecular scale and provide models of covalently bound complexes.

View Article and Find Full Text PDF

Rhomboid intramembrane serine proteases have been implicated in several pathologies, and emerge as attractive pharmacological target candidates. The most potent and selective rhomboid inhibitors available to date are peptidyl α-ketoamides, but their selectivity for diverse rhomboid proteases and strategies to modulate it in relevant contexts are poorly understood. This gap, together with the lack of suitable in vitro models, hinders ketoamide development for relevant eukaryotic rhomboid enzymes.

View Article and Find Full Text PDF
Article Synopsis
  • Adenovirus (AdV) infection in the respiratory tract is common but not well understood, especially how HAdV-C5, a type of human AdV, enters cells.* -
  • A new model suggests that human lactoferrin (hLF) helps the virus bypass traditional receptors by facilitating its uptake into epithelial cells through interactions with the viral protein hexon.* -
  • The study provides detailed cryo-EM structures showing how hLF connects with hexon, which could enhance understanding for gene therapy and vaccine development.*
View Article and Find Full Text PDF

Accurate estimation of protein-ligand binding affinity is the cornerstone of computer-aided drug design. We present a universal physics-based scoring function, named SQM2.20, addressing key terms of binding free energy using semiempirical quantum-mechanical computational methods.

View Article and Find Full Text PDF

A modified 2'-deoxycytidine triphosphate derivative (dC TP) bearing a thiazole orange moiety tethered via an oligoethylene glycol linker was designed and synthesized. The nucleotide was incorporated into DNA by DNA polymerases in vitro as well as in live cells. Upon incorporation of dC TP into DNA, the thiazole orange moiety exhibited a fluorescence lifetime that differed significantly from the non-incorporated (i.

View Article and Find Full Text PDF

The C-type lectin receptor DC-SIGN has been highlighted as the coreceptor for the spike protein of the SARS-CoV-2 virus. A multivalent glycomimetic ligand, Polyman26, has been found to inhibit DC-SIGN-dependent trans-infection of SARS-CoV-2. The molecular details underlying avidity generation in such systems remain poorly characterized.

View Article and Find Full Text PDF

The secondary structure of nucleic acids containing quartets of guanines, termed G-quadruplexes, is known to regulate the transcription of many genes. Several G-quadruplexes can be formed in the HIV-1 long terminal repeat promoter region and their stabilization results in the inhibition of HIV-1 replication. Here, we identified helquat-based compounds as a new class of anti-HIV-1 inhibitors that inhibit HIV-1 replication at the stage of reverse transcription and provirus expression.

View Article and Find Full Text PDF

Among non-covalent interactions, B-H⋯π and C-H⋯π hydrogen bonding is rather weak and less studied. Nevertheless, since both can affect the energetics of protein-ligand binding, their understanding is an important prerequisite for reliable predictions of affinities. Through a combination of high-resolution X-ray crystallography and quantum-chemical calculations on carbonic anhydrase II/carborane-based inhibitor systems, this paper provides the first example of B-H⋯π hydrogen bonding in a protein-ligand complex.

View Article and Find Full Text PDF
Article Synopsis
  • Insulin helps control the energy balance in our bodies and works by binding to its receptors.
  • Scientists created special insulin dimers (two connected molecules) that can either trigger or block these receptors.
  • Some of these dimers worked better than regular insulin at activating the receptors, suggesting they could be useful for more targeted treatments.
View Article and Find Full Text PDF

Cathepsin K (CatK) is a target for the treatment of osteoporosis, arthritis, and bone metastasis. Peptidomimetics with a cyanohydrazide warhead represent a new class of highly potent CatK inhibitors; however, their binding mechanism is unknown. We investigated two model cyanohydrazide inhibitors with differently positioned warheads: an azadipeptide nitrile and a 3-cyano-3-aza-β-amino acid .

View Article and Find Full Text PDF

RNA-peptide/protein interactions have been of utmost importance to life since its earliest forms, reaching even before the last universal common ancestor (LUCA). However, the ancient molecular mechanisms behind this key biological interaction remain enigmatic because extant RNA-protein interactions rely heavily on positively charged and aromatic amino acids that were absent (or heavily under-represented) in the early pre-LUCA evolutionary period. Here, an RNA-binding variant of the ribosomal uL11 C-terminal domain was selected from an approximately 1010 library of partially randomized sequences, all composed of ten prebiotically plausible canonical amino acids.

View Article and Find Full Text PDF

Galectin-1 is a β-galactoside-binding lectin with manifold biological functions. A single tryptophan residue (W68) in its carbohydrate binding site plays a major role in ligand binding and is highly conserved among galectins. To fine tune galectin-1 specificity, we introduced several non-canonical tryptophan analogues at this position of human galectin-1 and analyzed the resulting variants using glycan microarrays.

View Article and Find Full Text PDF

The 3-pyrazolo[4,3-]quinoline moiety has been recently shown to be a privileged kinase inhibitor core with potent activities against acute myeloid leukemia (AML) cell lines in vitro. Herein, various 3-pyrazolo[4,3-]quinoline-containing compounds were rapidly assembled via the Doebner-Povarov multicomponent reaction from the readily available 5-aminoindazole, ketones, and heteroaromatic aldehydes in good yields. The most active compounds potently inhibit the recombinant FLT3 kinase and its mutant forms with nanomolar IC values.

View Article and Find Full Text PDF

Pathogenic yeasts frequently cause infections in hospitals. Antifungal drugs lose effectiveness due to other species and resistance. New medications are thus required.

View Article and Find Full Text PDF

Multi-orthogonal molecular scaffolds can be applied as core structures of bioactive compounds. Here, we prepared four tri-orthogonal scaffolds based on adamantane or proline skeletons. The scaffolds were used for the solid-phase synthesis of model insulin mimetics bearing two different peptides on the scaffolds.

View Article and Find Full Text PDF

Azapeptide nitriles are postulated to reversibly covalently react with the active-site cysteine residue of cysteine proteases and form isothiosemicarbazide adducts. We investigated the interaction of azadipeptide nitriles with the cathepsin B1 drug target (SmCB1) from , a pathogen that causes the global neglected disease schistosomiasis. Azadipeptide nitriles were superior inhibitors of SmCB1 over their parent carba analogs.

View Article and Find Full Text PDF

The success of approximate computational methods, such as molecular mechanics, or dispersion-corrected density functional theory, in the description of non-covalent interactions relies on accurate parameterizations. Benchmark data sets are thus required. This area is well developed for organic molecules and biomolecules but practically non-existent for boron clusters, which have been gaining in importance in modern drug as well as material design.

View Article and Find Full Text PDF

Schistosomiasis, a parasitic disease caused by blood flukes of the genus , is a global health problem with over 200 million people infected. Treatment relies on just one drug, and new chemotherapies are needed. cathepsin B1 (SmCB1) is a critical peptidase for the digestion of host blood proteins and a validated drug target.

View Article and Find Full Text PDF

Invited for this month's cover is the group of Prof. Pavel Hobza, Czech Academy of Sciences, Prague. The cover picture shows a powerful automated quantum mechanics based SQM/COSMO approach to protein-ligand scoring.

View Article and Find Full Text PDF

Chronic infections with Pseudomonas aeruginosa are associated with the formation of bacterial biofilms. The tetrameric P. aeruginosa lectin LecA is a virulence factor and an anti-biofilm drug target.

View Article and Find Full Text PDF

Quantum mechanical (QM) methods have been gaining importance in structure-based drug design where a reliable description of protein-ligand interactions is of utmost significance. However, strategies i. e.

View Article and Find Full Text PDF

We report on the discovery of norbornyl moiety as a novel structural motif for cyclin-dependent kinase 2 (CDK2) inhibitors which was identified by screening a carbocyclic nucleoside analogue library. Three micromolar hits were expanded by the use of medicinal chemistry methods into a series of 16 novel compounds. They had prevailingly micromolar activities against CDK2 and the best compound of the series attained IC of 190 nM.

View Article and Find Full Text PDF

Human cathepsin D (CatD), a pepsin-family aspartic protease, plays an important role in tumor progression and metastasis. Here, we report the development of biomimetic inhibitors of CatD as novel tools for regulation of this therapeutic target. We designed a macrocyclic scaffold to mimic the spatial conformation of the minimal pseudo-dipeptide binding motif of pepstatin A, a microbial oligopeptide inhibitor, in the CatD active site.

View Article and Find Full Text PDF

Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2.

View Article and Find Full Text PDF

Pathogenic micro-organisms utilize protein receptors (lectins) in adhesion to host tissues, a process that in some cases relies on the interaction between lectins and human glycoconjugates. Oligosaccharide epitopes are recognized through their three-dimensional structure and their flexibility is a key issue in specificity. In this paper, we analysed by X-ray crystallography the structures of the LecB lectin from two strains of Pseudomonas aeruginosa in complex with Lewis x oligosaccharide present on cell surfaces of human tissues.

View Article and Find Full Text PDF