Publications by authors named "Martin Lefebvre"

While the backpropagation of error algorithm enables deep neural network training, it implies (i) bidirectional synaptic weight transport and (ii) update locking until the forward and backward passes are completed. Not only do these constraints preclude biological plausibility, but they also hinder the development of low-cost adaptive smart sensors at the edge, as they severely constrain memory accesses and entail buffering overhead. In this work, we show that the one-hot-encoded labels provided in supervised classification problems, denoted as targets, can be viewed as a proxy for the error sign.

View Article and Find Full Text PDF

Shifting computing architectures from von Neumann to event-based spiking neural networks (SNNs) uncovers new opportunities for low-power processing of sensory data in applications such as vision or sensorimotor control. Exploring roads toward cognitive SNNs requires the design of compact, low-power and versatile experimentation platforms with the key requirement of online learning in order to adapt and learn new features in uncontrolled environments. However, embedding online learning in SNNs is currently hindered by high incurred complexity and area overheads.

View Article and Find Full Text PDF