Publications by authors named "Martin Larocca"

Variational quantum computing schemes train a loss function by sending an initial state through a parametrized quantum circuit, and measuring the expectation value of some operator. Despite their promise, the trainability of these algorithms is hindered by barren plateaus (BPs) induced by the expressiveness of the circuit, the entanglement of the input data, the locality of the observable, or the presence of noise. Up to this point, these sources of BPs have been regarded as independent.

View Article and Find Full Text PDF

The prospect of achieving quantum advantage with quantum neural networks (QNNs) is exciting. Understanding how QNN properties (for example, the number of parameters M) affect the loss landscape is crucial to designing scalable QNN architectures. Here we rigorously analyze the overparametrization phenomenon in QNNs, defining overparametrization as the regime where the QNN has more than a critical number of parameters M allowing it to explore all relevant directions in state space.

View Article and Find Full Text PDF