Over a seven-year period (2004-2010) 1095 water samples were obtained from the South Nation River basin at multiple watershed monitoring sites (Ontario, Canada). Real-time PCR using Bacteroidales specific markers was used to identify the origin (human (10% prevalence), ruminant (22%), pig (~2%), Canada goose (4%) and muskrat (7%)) of fecal pollution. In parallel, the distribution of fecal indicator bacteria and waterborne pathogens (Cryptosporidium oocysts, Giardia cysts, Escherichia coli O157:H7, Salmonella enterica and Campylobacter spp.
View Article and Find Full Text PDFEnterococci are gastrointestinal tract residents and also an important cause of nosocomial infections. To understand which species, virulence determinants, and antibiotic resistances are prevalent in enterococci shed by various hosts groups, a total of 1460 strains isolated from 144 fecal samples obtained from wastewater, domesticated mammals and birds, and wildlife were characterized. Identification of isolates to the species level showed that Enterococcus faecalis was dominant in domesticated mammals and birds and wildlife feces, whereas Enterococcus faecium was dominant among wastewater isolates, and that no single Enterococcus species could be associated with a specific host group.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2008
Shewanella oneidensis MR-1 grew for over 50 days in microbial fuel cells, incompletely oxidizing lactate to acetate with high recovery of the electrons derived from this reaction as electricity. Electricity was produced with lactate or hydrogen and current was comparable to that of electricigens which completely oxidize organic substrates. However, unlike fuel cells with previously described electricigens, in which cells are primarily attached to the anode, at least as many of the S.
View Article and Find Full Text PDFThe ability of Pelobacter carbinolicus to oxidize electron donors with electron transfer to the anodes of microbial fuel cells was evaluated because microorganisms closely related to Pelobacter species are generally abundant on the anodes of microbial fuel cells harvesting electricity from aquatic sediments. P. carbinolicus could not produce current in a microbial fuel cell with electron donors which support Fe(III) oxide reduction by this organism.
View Article and Find Full Text PDFDesulfitobacterium spp. are strictly anaerobic bacteria that were first isolated from environments contaminated by halogenated organic compounds. They are very versatile microorganisms that can use a wide variety of electron acceptors, such as nitrate, sulfite, metals, humic acids, and man-made or naturally occurring halogenated organic compounds.
View Article and Find Full Text PDF