Publications by authors named "Martin L Tomov"

Article Synopsis
  • This protocol outlines how to create a bioink that uses nanoparticles to protect tissue-engineered constructs from bacterial infections and enhance MR imaging.
  • It details the preparation of methacrylated gelatin-based bioinks and includes the addition of superparamagnetic iron oxide nanoparticles.
  • The article also covers methods for characterizing the bioink, testing cell responses, and evaluating its antibacterial properties, making it a valuable resource for tissue engineering applications.
View Article and Find Full Text PDF

Introduction: Primary pulmonary vein stenosis (PVS) is a rare congenital heart disease that proves to be a clinical challenge due to the rapidly progressive disease course and high rates of treatment complications. PVS intervention is frequently faced with in-stent restenosis and persistent disease progression despite initial venous recanalization with balloon angioplasty or stenting. Alterations in wall shear stress (WSS) have been previously associated with neointimal hyperplasia and venous stenosis underlying PVS progression.

View Article and Find Full Text PDF

The ability to promote three-dimensional (3D) self-organization of induced pluripotent stem cells into complex tissue structures called organoids presents new opportunities for the field of developmental biology. Brain organoids have been used to investigate principles of neurodevelopment and neuropsychiatric disorders and serve as a drug screening and discovery platform. However, brain organoid cultures are currently limited by a lacking ability to precisely control their extracellular environment.

View Article and Find Full Text PDF

Vascular cell overgrowth and lumen size reduction in pulmonary vein stenosis (PVS) can result in elevated PV pressure, pulmonary hypertension, cardiac failure, and death. Administration of chemotherapies such as rapamycin have shown promise by inhibiting the vascular cell proliferation; yet clinical success is limited due to complications such as restenosis and off-target effects. The lack of in vitro models to recapitulate the complex pathophysiology of PVS has hindered the identification of disease mechanisms and therapies.

View Article and Find Full Text PDF

3D bioprinting is revolutionizing the fields of personalized and precision medicine by enabling the manufacturing of bioartificial implants that recapitulate the structural and functional characteristics of native tissues. However, the lack of quantitative and noninvasive techniques to longitudinally track the function of implants has hampered clinical applications of bioprinted scaffolds. In this study, multimaterial 3D bioprinting, engineered nanoparticles (NPs), and spectral photon-counting computed tomography (PCCT) technologies are integrated for the aim of developing a new precision medicine approach to custom-engineer scaffolds with traceability.

View Article and Find Full Text PDF

Adhesive tissue engineering scaffolds (ATESs) have emerged as an innovative alternative means, replacing sutures and bioglues, to secure the implants onto target tissues. Relying on their intrinsic tissue adhesion characteristics, ATES systems enable minimally invasive delivery of various scaffolds. This study investigates development of the first class of 3D bioprinted ATES constructs using functionalized hydrogel bioinks.

View Article and Find Full Text PDF

Photocrosslinked hydrogels, such as methacrylate-modified gelatin (gelMA) and hyaluronic acid (HAMA), are widely utilized as tissue engineering scaffolds and/or drug delivery vehicles, but lack a suitable means for non-invasive, longitudinal monitoring of surgical placement, biodegradation, and drug release. Therefore, we developed a novel photopolymerizable X-ray contrast agent, methacrylate-modified gold nanoparticles (AuMA NPs), to enable covalent-linking to methacrylate-modified hydrogels (gelMA and HAMA) in one-step during photocrosslinking and non-invasive monitoring by X-ray micro-computed tomography (micro-CT). Hydrogels exhibited a linear increase in X-ray attenuation with increased Au NP concentration to enable quantitative imaging by contrast-enhanced micro-CT.

View Article and Find Full Text PDF

Biomaterial-associated microbial contaminations in biologically conducive three-dimensional (3D) tissue-engineered constructs have significantly limited the clinical applications of scaffold systems. To prevent such infections, antimicrobial biomaterials are rapidly evolving. Yet, the use of such materials in bioprinting-based approaches of scaffold fabrication has not been examined.

View Article and Find Full Text PDF

Neuroblastoma (NB) is the most common extracranial tumor in children resulting in substantial morbidity and mortality. A deeper understanding of the NB tumor microenvironment (TME) remains an area of active research but there is a lack of reliable and biomimetic experimental models. This study utilizes a 3D bioprinting approach, in combination with NB spheroids, to create an in vitro vascular model of NB for exploring the tumor function within an endothelialized microenvironment.

View Article and Find Full Text PDF

Vascular atresia are often treated via transcatheter recanalization or surgical vascular anastomosis due to congenital malformations or coronary occlusions. The cellular response to vascular anastomosis or recanalization is, however, largely unknown and current techniques rely on restoration rather than optimization of flow into the atretic arteries. An improved understanding of cellular response post anastomosis may result in reduced restenosis.

View Article and Find Full Text PDF

A variety of suture and bioglue techniques are conventionally used to secure engineered scaffold systems onto the target tissues. These techniques, however, confront several obstacles including secondary damages, cytotoxicity, insufficient adhesion strength, improper degradation rate, and possible allergic reactions. Adhesive tissue engineering scaffolds (ATESs) can circumvent these limitations by introducing their intrinsic tissue adhesion ability.

View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived (iPSC) neural cultures offer clinically relevant models of human diseases, including Amyotrophic Lateral Sclerosis, Alzheimer's, and Autism Spectrum Disorder. In situ characterization of the spatial-temporal evolution of cell state in 3D culture and subsequent 2D dissociated culture models based on protein expression levels and localizations is essential to understanding neural cell differentiation, disease state phenotypes, and sample-to-sample variability. Here, we apply PRobe-based Imaging for Sequential Multiplexing (PRISM) to facilitate multiplexed imaging with facile, rapid exchange of imaging probes to analyze iPSC-derived cortical and motor neuron cultures that are relevant to psychiatric and neurodegenerative disease models, using over ten protein targets.

View Article and Find Full Text PDF

Current strategies for regeneration of large bone fractures yield limited clinical success mainly due to poor integration and healing. Multidisciplinary approaches in design and development of functional tissue engineered scaffolds are required to overcome these translational challenges. Here, a new generation of hyperelastic bone (HB) implants, loaded with superparamagnetic iron oxide nanoparticles (SPIONs), are 3D bioprinted and their regenerative effect on large non-healing bone fractures is studied.

View Article and Find Full Text PDF

3D bioprinting techniques have shown great promise in various fields of tissue engineering and regenerative medicine. Yet, creating a tissue construct that faithfully represents the tightly regulated composition, microenvironment, and function of native tissues is still challenging. Among various factors, biomechanics of bioprinting processes play fundamental roles in determining the ultimate outcome of manufactured constructs.

View Article and Find Full Text PDF

The heart is the first organ to develop in the human embryo through a series of complex chronological processes, many of which critically rely on the interplay between cells and the dynamic microenvironment. Tight spatiotemporal regulation of these interactions is key in heart development and diseases. Due to suboptimal experimental models, however, little is known about the role of microenvironmental cues in the heart development.

View Article and Find Full Text PDF

Background: COVID-19 poses a risk to the endoscopic skull base surgeon. Significant efforts to improving safety have been employed, including the use of personal protective equipment, preoperative COVID-19 testing, and recently the use of a modified surgical mask barrier.

Objective: To reduce the risks of pathogen transmission during endoscopic skull base surgery.

View Article and Find Full Text PDF

Background Tetralogy of Fallot with major aortopulmonary collateral arteries is a heterogeneous form of pulmonary artery (PA) stenosis that requires multiple forms of intervention. We present a patient-specific in vitro platform capable of sustained flow that can be used to train proceduralists and surgical teams in current interventions, as well as in developing novel therapeutic approaches to treat various vascular anomalies. Our objective is to develop an in vitro model of PA stenosis based on patient data that can be used as an in vitro phantom to model cardiovascular disease and explore potential interventions.

View Article and Find Full Text PDF

Purpose Of Review: Tissue engineering has expanded into a highly versatile manufacturing landscape that holds great promise for advancing cardiovascular regenerative medicine. In this review, we provide a summary of the current state-of-the-art bioengineering technologies used to create functional cardiac tissues for a variety of applications in vitro and in vivo.

Recent Findings: Studies over the past few years have made a strong case that tissue engineering is one of the major driving forces behind the accelerating fields of patient-specific regenerative medicine, precision medicine, compound screening, and disease modeling.

View Article and Find Full Text PDF

To date, the fields of biomaterials science and tissue engineering have shown great promise in creating bioartificial tissues and organs for use in a variety of regenerative medicine applications. With the emergence of new technologies such as additive biomanufacturing and 3D bioprinting, increasingly complex tissue constructs are being fabricated to fulfill the desired patient-specific requirements. Fundamental to the further advancement of this field is the design and development of imaging modalities that can enable visualization of the bioengineered constructs following implantation, at adequate spatial and temporal resolution and high penetration depths.

View Article and Find Full Text PDF

Three-dimensional (3D) cardiac tissue bioprinting occupies a critical crossroads position between the fields of materials engineering, cardiovascular biology, 3D printing, and rational organ replacement design. This complex area of research therefore requires expertise from all those disciplines and it poses some unique considerations that must be accounted for. One of the chief hurdles is that there is a relatively limited systematic organization of the physical and chemical characteristics of bioinks that would make them applicable to cardiac bioprinting.

View Article and Find Full Text PDF

The realization of personalized medicine through human induced pluripotent stem cell (iPSC) technology can be advanced by transcriptomics, epigenomics, and bioinformatics that inform on genetic pathways directing tissue development and function. When possible, population diversity should be included in new studies as resources become available. Previously we derived replicate iPSC lines of African American, Hispanic-Latino and Asian self-designated ethnically diverse (ED) origins with normal karyotype, verified teratoma formation, pluripotency biomarkers, and tri-lineage in vitro commitment.

View Article and Find Full Text PDF

The human genome with all its ethnic variations contributes to differences in human development, aging, disease, repair, and response to medical treatments and is an exciting area of research and clinical study. The availability of well-characterized ethnically diverse stem cell lines is limited and has not kept pace with other advances in stem cell research. Here we derived xenofree ethnically diverse-human induced pluripotent stem cell (ED-iPSC) lines from fibroblasts obtained from individuals of African American, Hispanic-Latino, Asian, and Caucasian ethnic origin and have characterized the lines under a uniform platform for comparative analysis.

View Article and Find Full Text PDF

In pluripotent stem cell differentiation, embryoid bodies (EBs) provide a three-dimensional [3D] multicellular precursor in lineage specification. The internal structure of EBs is not well characterized yet is predicted to be an important parameter to differentiation. Here, we use custom SU-8 molds to generate transparent lithography-templated arrays of polydimethylsiloxane (LTA-PDMS) for high throughput analysis of human embryonic stem cell (hESC) EB formation and internal architecture.

View Article and Find Full Text PDF