Publications by authors named "Martin L Schmitt"

Posttranslational modifications of histone tails are very important for epigenetic gene regulation. The lysine-specific demethylase LSD1 (KDM1A/AOF2) demethylates in vitro predominantly mono- and dimethylated lysine 4 on histone 3 (H3K4) and is a promising target for drug discovery. We report a heterogeneous antibody-based assay, using dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) for the detection of LSD1 activity.

View Article and Find Full Text PDF

Lysine demethylases play an important role in epigenetic regulation and thus in the development of diseases like cancer or neurodegenerative disorders. As the lysine specific demethylase 1 (LSD1/KDM1) has been strongly connected to androgen and estrogen dependent gene expression, it serves as a promising target for the therapy of hormone dependent cancer. Here, we report on the discovery of new small molecule inhibitors of LSD1 containing a propargylamine warhead, starting out from lysine containing substrate analogues.

View Article and Find Full Text PDF

NAD(+)-dependent histone deacetylases (sirtuins) play important roles in epigenetic regulation but also through nonhistone substrates for other key cellular events and have been linked to the pathogenesis of cancer, neurodegeneration, and metabolic diseases. The subtype Sirt5 has been shown recently to act as a desuccinylating and demalonylating enzyme. We have established an assay for biochemical testing of Sirt5 using a small labeled succinylated lysine derivative.

View Article and Find Full Text PDF

Reversible histone methylation has emerged in the last few years as an important mechanism of epigenetic regulation. Histone methyltransferases and demethylases have been identified as contributing factors in the development of several diseases, especially cancer. Therefore, they have been postulated to be new drug targets with high therapeutic potential.

View Article and Find Full Text PDF

NAD+-dependent histone deacetylases (sirtuins) are enzymes that cleave acetyl groups from lysine residues in histones and other proteins. Potent selective sirtuin inhibitors are interesting tools for the investigation of the biological functions of these enzymes and may be future drugs for the treatment of cancer or neurodegenerative diseases. Herein we present the results from a protein-based virtual screen of a commercial database with subsequent biological testing of the most promising compounds.

View Article and Find Full Text PDF