The bacteriophage Mu strong gyrase site (SGS), required for efficient phage DNA replication, differs from other gyrase sites in the efficiency of gyrase binding coupled with a highly processive supercoiling activity. Genetic studies have implicated the right arm of the SGS as a key structural feature for promoting rapid Mu replication. Here, we show that deletion of the distal portion of the right arm abolishes efficient binding, cleavage, and supercoiling by DNA gyrase in vitro.
View Article and Find Full Text PDFReplication of Mu prophages lacking the central strong gyrase site (SGS) is severely slowed. To study details of the replication of these prophages, an assay was developed for determining the rate and extent of introduction of nicks at the 3'-ends of a Mu prophage, an early step in Mu replicative transposition. The maximal level of end-nicking of a prophage with the SGS, about 70-90% depending upon the host strain, was achieved within about 15 min after induction, whereas at that time less than 5% nicking was observed with a prophage lacking the SGS.
View Article and Find Full Text PDFThe bacteriophage Mu genome contains a centrally located strong gyrase site (SGS) that is required for efficient prophage replication. To aid in studying the unusual properties of the SGS, we sought other gyrase sites that might be able to substitute for the SGS in Mu replication. Five candidate sites were obtained by PCR from Mu-like prophage sequences present in Escherichia coli O157:H7 Sakai, Haemophilus influenzae Rd, Salmonella enterica serovar Typhi CT18, and two strains of Neisseria meningitidis.
View Article and Find Full Text PDFReplication of bacteriophage Mu DNA, a process requiring efficient synapsis of the prophage ends, takes place within the confines of the Escherichia coli nucleoid. Critical to ensuring rapid synapsis is the function of the SGS, a strong gyrase site, located at the centre of the Mu genome. Replacement of the SGS by the strong gyrase sites from pSC101 or pBR322 fails to support efficient prophage replication.
View Article and Find Full Text PDF