Publications by authors named "Martin Krupicka"

A starting thiacalix[4]arene can be easily transformed into oxidized phenoxathiin-based macrocycles 9 and 9', representing an unusual structural motif in calixarene chemistry. The presence of electron-withdrawing groups (SO, SO) and the considerable internal strain caused by the condensed heterocyclic moiety render these molecules susceptible to nucleophilic attack. The reaction with various organolithium reagents provides a number of different products resulting from the cleavage of either the calixarene skeleton or the phenoxathiin group or both ways simultaneously.

View Article and Find Full Text PDF

Covalent adducts of flavin cofactors with nucleophiles play an important role in non-canonical function of flavoenzymes as well as in flavin-based catalysis. Herein, the interaction of flavin derivatives including substituted flavins (isoalloxazines), 1,10-ethylene-bridged flavinium salts, and non-substituted alloxazine and deazaflavin with selected nucleophiles was investigated using an experimental and computational approach. Triphenylphosphine or trimethylphosphine, 1-nitroethan-1-ide, and methoxide were selected as representatives of neutral soft, anionic soft, and hard nucleophiles, respectively.

View Article and Find Full Text PDF

Nitroalkane oxidases (NAOs) are flavoenzymes that catalyse the oxidation of nitroalkanes to their corresponding carbonyl compounds while producing nitrite anions. Herein, we present an artificial catalytic system using flavins or ethylene-bridged flavinium salts that works an NAO-like process. Under conditions optimised in terms of solvent, base, temperature and oxygen pressure, primary nitroalkanes were transformed to aldehydes.

View Article and Find Full Text PDF

Desymmetrization of persubstituted calix[4]arenes represents an interesting way to yield distally disubstituted derivatives. The reaction of tetrabrominated calixarenes in three different conformations (, , and ) with an excess of -BuLi surprisingly leads with high selectivity to distally dilithiated derivatives that, by reaction with electrophiles, give substitution patterns which are difficult to obtain by other ways. Using a combination of synthetic and theoretical approaches (DFT), we tried to demonstrate the usefulness of this method and provide a possible explanation for this unexpected selectivity.

View Article and Find Full Text PDF

In the growing field of single-molecule mechanochromism, the potential of transition metal complexes is yet to be examined. In this work, we have synthesized a series of [Cu(phen)] complexes: bis-Cu(I)-phenanthroline, bis-Cu(I)-phenanthroline-2-amine, and bis-Cu(I)-phenanthroline-2-acetamide. After that, we characterized the complexes by UV-vis spectroscopy and employed density functional theory (DFT) calculations to investigate the changes in UV-vis upon mechanical pulling via force calculations.

View Article and Find Full Text PDF

The accuracy of biomolecular simulations depends on the accuracy of an empirical molecular mechanics potential known as a force field: a set of parameters and expressions to estimate the potential from atomic coordinates. Accurate parametrization of force fields for small organic molecules is a challenge due to their high diversity. One of the possible approaches is to apply a correction to the existing force fields.

View Article and Find Full Text PDF

Oxidized phenoxathiin-based macrocycles, easily accessible thiacalix[4]arene derivatives, consist of a unique set of structural elements representing a key prerequisite for the unexpected reactivity described in this paper. As proposed, the internal strain, imposed by the presence of a heterocyclic moiety, together with a number of electron-withdrawing groups (SO) opens the way to the cleavage of the macrocyclic skeleton through a cascade of three SAr reactions triggered by the nucleophilic attack of an SH anion. The whole transformation, which is unparalleled in classical calixarene chemistry, leads to unique linear sulfinic acid derivatives with a rearranged phenoxathiin moiety that can serve as building blocks for macrocyclic systems of a new type.

View Article and Find Full Text PDF

We report an effective, operationally simple, and environmentally friendly system for the synthesis of tertiary amides by the oxidative coupling of aromatic or aliphatic aldehydes with amines mediated by riboflavin tetraacetate (), an inexpensive organic photocatalyst, and visible light using oxygen as the sole oxidant. The method is based on the oxidative power of an excited flavin catalyst and the relatively low oxidation potential of the hemiaminal formed by amine to aldehyde addition.

View Article and Find Full Text PDF

Nitrosobenzene has been demonstrated to participate in the Mitsunobu reaction in an analogous manner to dialkyl azodicarboxylates. The protocol using nitrosobenzene and triphenylphosphine (1:1) under mild conditions (0 °C) provides the ester derivatives of aliphatic and aromatic acids using various alcohols in moderate yield and with good enantioselectivity, giving the desired products predominantly with an inversion of configuration. The proposed mechanism, which is analogous to that observed using dialkyl azodicarboxylates, involves a nitrosobenzene-triphenylphosphine adduct and an alkoxytriphenylphosphonium ion and was supported by density functional theory calculations, P NMR spectroscopy, and experiments conducted with isotopically labeled substrates.

View Article and Find Full Text PDF

The meta-bridged calixarenes possess a rigidified and highly distorted cavity, where the additional single-bond bridge imposes an extreme internal strain on the whole system. As a consequence, these compounds exhibit a reasonably amended reactivity, compared with common calix[4]arene derivatives, which is governed by the release of internal strain. This can be documented by the reaction of the bridged calix[4]arene with PO or Nafion-H, leading (apart from polymers) to a macrocyclic product with a rearranged basic skeleton.

View Article and Find Full Text PDF

A spin adapted configuration interaction scheme is proposed for the evaluation of ionization potentials in high spin open shell reference functions. There are three different ways to remove an electron from such a reference, including the removal of an alpha or a beta electron from doubly occupied or an alpha electron from singly occupied molecular orbitals. Ionization operators are constructed for each of these cases, and the resulting second quantized expressions are implemented using an automated code generator environment.

View Article and Find Full Text PDF

The mechanochemistry of ring-opening reactions of cyclopropane derivatives turns out to be unexpectedly rich and puzzling. After showing that a rare so-called uphill bifurcation in the case of trans-gem-difluorocyclopropane turns into a downhill bifurcation upon substitution of fluorine by chlorine, bromine, and iodine in the thermal activation limit, the dichloro derivative is studied systematically in the realm of mechanochemical activation. Detailed exploration of the force-transformed potential energy surface of trans-gem-dichlorocyclopropane in terms of Dijkstra path analysis unveils a hitherto unknown topological catastrophe where the global shape of the energy landscape is fundamentally changed.

View Article and Find Full Text PDF

The similarity transformed equation of motion coupled-cluster approach is extended for applications to high-spin open-shell systems, within the unrestricted Hartree-Fock (UHF) formalism. An automatic active space selection scheme has also been implemented such that calculations can be performed in a black-box fashion. It is observed that both the canonical and automatic active space selecting similarity transformed equation of motion (STEOM) approaches perform about as well as the more expensive equation of motion coupled-cluster singles doubles (EOM-CCSD) method for the calculation of the excitation energies of doublet radicals.

View Article and Find Full Text PDF

In this work, the automated generator environment for ORCA (ORCA-AGE) is described. It is a powerful toolchain for the automatic implementation of wavefunction-based quantum chemical methods. ORCA-AGE consists of three main modules: (1) generation of "raw" equations from a second quantized Ansatz for the wavefunction, (2) factorization and optimization of equations, and (3) generation of actual computer code.

View Article and Find Full Text PDF

The mechanochemical cycloreversion of 1,2,3-triazole compounds, which serve as unusually stable building blocks in materials and biomolecular chemistry as a result of mild "click chemistry", remains puzzling. We show that the hitherto discussed straight-forward retro-click mechanism of the 1,4-disubstituted isomer, even if Cu catalyzed, can be ruled out in view of more favorable activation free energies of destructive pathways. In stark contrast, the 1,5-regioiomer can undergo cycloreversion under rather mild mechanochemical conditions owing to its favorable response to the external force in conjunction with standard Ru catalysis.

View Article and Find Full Text PDF

The reduction of disulfides has a broad importance in chemistry, biochemistry and materials science, particularly those methods that use mechanochemical activation. Here we show, using isotensional simulations, that strikingly different mechanisms govern disulfide cleavage depending on the external force. Desolvation and resolvation processes are found to be crucial, as they have a direct impact on activation free energies.

View Article and Find Full Text PDF

Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces.

View Article and Find Full Text PDF

Understanding the impact of tensile forces on disulfide bond cleavage is not only crucial to the breaking of cross-linkers in vulcanized materials such as strained rubber, but also to the regulation of protein activity by disulfide switches. By using ab initio simulations in the condensed phase, we investigated the response of disulfide cleavage by β-elimination to mechanical stress. We reveal that the rate-determining first step of the thermal reaction, which is the abstraction of the β-proton, is insensitive to external forces.

View Article and Find Full Text PDF

Mechanochemical activation of covalent bonds using sonication, force spectroscopy, or molecular force probes usually lowers activation energies and thus accelerates reactions. However, applying mechanical forces to complex molecules is known to not only stretch covalent bonds but also to distort the molecular skeleton that hosts the activated bonds-leading to nonmonotonous behavior as a function of force. Here, the Bell-Taft model is introduced and validated which both rationalizes and quantifies such nonlinear effects on activation energies, including the transition from catch bonds at low forces to slip binding, in terms of steric hindrance caused by force-induced conformational distortions.

View Article and Find Full Text PDF

Since decades, pericyclic reactions have been well-understood by means of the Woodward-Hoffmann rules and their classification as thermally or photochemically "allowed" or "forbidden". Recently, stunning results on such reactions subject to mechanochemical activation by external forces instead of heat or light have revealed reaction pathways at sufficiently large forces, which are not expected from the Woodward-Hoffmann rules. This led to the much reiterated idea that the "Woodward-Hoffmann rules are broken in mechanochemistry".

View Article and Find Full Text PDF

Photoswitches incorporated into molecular frameworks have been used since a long time to trigger chemical processes on demand. Here, it is shown how mechanophores can be used as switches in order to drastically change the reactivity of a neighboring functional group as a function of external stress. The reactivities of cyclic enediynes, which are highly toxic agents when undergoing Bergman cyclization, roughly correlate with the distance between the bond-forming carbons in many cases.

View Article and Find Full Text PDF

Recent force microscopy measurements on the mechanically activated cleavage of a protein disulfide bond through reaction with hydroxide ions revealed that for forces greater than 0.5 nN, the acceleration of the reaction rate is substantially reduced. Here, using ab initio simulations, we trace this 'reactivity switch' back to a dual role played by the mechanical force, which leads to antagonistic effects.

View Article and Find Full Text PDF

Cytokinins (CKs) are plant hormones affecting numerous developmental processes. Zeatin and its derivatives are the most important group of isoprenoid CKs. Zeatin occurs as two isomers: while trans-zeatin (transZ) was found to be a bioactive substance, cis-zeatin (cisZ) was reported to have a weak biological impact.

View Article and Find Full Text PDF

The interaction between tert-butylcarbamoylquinine selector and (S)-3,5-dinitrobenzoyl alanine selectand was studied experimentally and theoretically by chiroptical methods. Using a combination of experimental and calculated circular dichroism spectra, we present the first work dealing with the interaction of two dissimilar chiral molecules interacting by diverse types of interactions: ion pairing, hydrogen bonding and π-π stacking. Conformational analysis of the free selector, free selectand and the complex of selector with selectand was carried out and the obtained conformers were optimized at the BHandH/6-31+G** and B97d/6-31+G** levels.

View Article and Find Full Text PDF

The enzyme beta-1,4-galactosyltransferase-1 (beta4Gal-T1) catalyzes the transfer of a galactose residue from UDP-Gal to the C4-hydroxyl group of N-acetylglucosamine. The catalytic mechanism of beta4Gal-T1 was investigated using the hybrid quantum mechanical/molecular mechanical (QM/MM) method, with the QM portion containing 253 atoms treated with density functional theory (DFT) at the BP/DZP and BP/TZ2P levels. The remaining parts of the beta4Gal-T1 complex, 4527 atoms in all, were modeled using the AMBER molecular force field.

View Article and Find Full Text PDF