Publications by authors named "Martin Korth"

This Editorial discusses the importance of scientists currently working in separate fields-experimental characterization of novel materials and theoretical investigations of electrochemical processes-joining forces to advance the field of energy-storage materials and devices. Some of these efforts are published in this Special Issue by ChemSusChem.

View Article and Find Full Text PDF

More insight or only more parameters? A recent claim that the development of new density functional theory (DFT) functionals is straying from the right path has sparked a lively discussion among theoretical chemists about the future of DFT.

View Article and Find Full Text PDF

In this study, we aim at understanding the influence of dispersion correction on the ab initio molecular dynamics simulations of ionic liquid (IL) systems. We investigated a large bulk system of the 1-butyl-3-methylimidazolium triflate IL and a small cluster system of ethylamine in ethylammonium nitrate both under periodic boundary conditions. The large system displays several changes upon neglect of dispersion correction, the most striking one is the surprising decrease of the well-known microheterogeneity which is accompanied by an increase of side chain hydrogen atom-anion interplay.

View Article and Find Full Text PDF

Diverse LiPF hydrolysis products evolve during lithium-ion battery cell operation at elevated operation temperatures and high operation voltages. However, their impact on the formation and stability of the electrode/electrolyte interfaces is not yet investigated and understood. In this work, literature-known hydrolysis products of LiPF dimethyl fluorophosphate (DMFP) and diethyl fluorophosphate (DEFP) were synthesized and characterized.

View Article and Find Full Text PDF

We report the development of adaptive QM/MM computer simulations for electrochemistry, providing public access to all sources via the free and open source software development model. We present a modular workflow-based MD simulation code as a platform for algorithms for partitioning space into different regions, which can be treated at different levels of theory on a per-timestep basis. Currently implemented algorithms focus on targeting molecules and their solvation layers relevant to electrochemistry.

View Article and Find Full Text PDF

To identify alternative single-solvent-based electrolytes for application in lithium-ion batteries (LIBs), adequate computational methods were applied to screen specified physicochemical and electrochemical properties of new cyanoester-based compounds. Out of 2747 possible target compounds, two promising candidates and two structurally equivalent components were chosen. A constructive selection process including evaluation of basic physicochemical properties as well assessing the compatibility towards graphitic anodes was initiated to identify the most promising candidates.

View Article and Find Full Text PDF

We review the first successes and failures of a "new wave" of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of "enhanced", dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods.

View Article and Find Full Text PDF

The last five years have seen a renaissance of semiempirical quantum mechanical (SQM) methods in the field of virtual drug design, largely due to the increased accuracy of so-called enhanced SQM approaches. These methods make use of additional terms for treating dispersion (D) and hydrogen bond (H) interactions with an accuracy comparable to dispersion-corrected density functional theory (DFT-D). DFT-D in turn was shown to provide an accuracy comparable to the most sophisticated QM approaches when it comes to non-covalent intermolecular forces, which usually dominate the protein/ligand interactions that are central to virtual drug design.

View Article and Find Full Text PDF

Computational screening of battery electrolyte components is an extremely challenging task because very complex features like solid-electrolyte-interphase (SEI) formation and graphite exfoliation need to be taken into account at least in the final screening stage. We present estimators for both SEI formation and graphite exfoliation based on a combinatorial approach using quantum chemistry calculations on model system reactions, which can be applied automatically for a large number of compounds and thus allows for the systematic first assessment of the relevant properties using screening approaches. The thermodynamic effects are assessed using quantum mechanical calculations, while a more heuristic approach is used to estimate the kinetic effects.

View Article and Find Full Text PDF

Li-air batteries are very promising candidates for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-air electrolyte solvents. It is shown that the problem of finding better Li-air electrolyte solvents is not only - as previously suggested - about maximizing Li(+) and O2(-) solubilities, but also about finding the optimal balance of these solubilities with the viscosity of the solvent.

View Article and Find Full Text PDF

Recent successes and failures of the application of 'enhanced' semiempirical QM (SQM) methods are reviewed in the light of the benefits and backdraws of adding dispersion (D) and hydrogen-bond (H) correction terms. We find that the accuracy of SQM-DH methods for non-covalent interactions is very often reported to be comparable to dispersion-corrected density functional theory (DFT-D), while computation times are about three orders of magnitude lower. SQM-DH methods thus open up a possibility to simulate realistically large model systems for problems both in life and materials science with comparably high accuracy.

View Article and Find Full Text PDF

A volunteer computing approach is presented for the purpose of screening a large number of molecular structures with respect to their suitability as new battery electrolyte solvents. Collective properties like melting, boiling and flash points are evaluated using COSMOtherm and quantitative structure-property relationship (QSPR) based methods, while electronic structure theory methods are used for the computation of electrochemical stability window estimators. Two application examples are presented: first, the results of a previous large-scale screening test (PCCP, 2014, 16, 7919) are re-evaluated with respect to the mentioned collective properties.

View Article and Find Full Text PDF

We present new dispersion and hydrogen bond corrections to the PM6 method, PM6-D3H+, and its implementation in the GAMESS program. The method combines the DFT-D3 dispersion correction by Grimme et al. with a modified version of the H+ hydrogen bond correction by Korth.

View Article and Find Full Text PDF

The performance of semi-empirical quantum mechanical (SQM), density functional theory (DFT) and wave function theory (WFT) methods is evaluated for the purpose of screening a large number of molecular structures with respect to their electrochemical stability to identify new battery electrolyte solvents. Starting from 100,000 database entries and based on more than 46,000 DFT calculations, 83 candidate molecules are identified and then used for benchmarking lower-level computational models (SQM, DFT) with respect to higher-level WFT reference data. A combination of SQM and WFT methods is suggested as a screening strategy at the electronic structure theory level.

View Article and Find Full Text PDF

The first-principles modeling of biomaterials has made tremendous advances over the last few years with the ongoing growth of computing power and impressive developments in the application of density functional theory (DFT) codes to large systems. One important step forward was the development of dispersion corrections for DFT methods, which account for the otherwise neglected dispersive van der Waals (vdW) interactions. Approaches at different levels of theory exist, with the most often used (semi-)empirical ones based on pair-wise interatomic C6R(-6) terms.

View Article and Find Full Text PDF

Correctly ranking protein-ligand interactions with respect to overall free energy of binding is a grand challenge for virtual drug design. Here we compare the performance of various quantum chemical approaches for tackling this so-called "scoring" problem. Relying on systematically generated benchmark sets of large protein/ligand model complexes based on the PDBbind database, we show that the performance depends first of all on the general level of theory.

View Article and Find Full Text PDF

The accurate description of hydrogen-bond interactions is of vital importance for the computational modeling of biological systems. Standard force field (FF) as well as semiempirical quantum mechanical (SQM) methods are now known to have considerable problems with the accurate description of hydrogen bonds. It was found that the performance of SQM methods can be greatly improved with empirical hydrogen-bond correction terms.

View Article and Find Full Text PDF

Semiempirical quantum mechanical (SQM) methods offer a fast approximate treatment of the electronic structure and the properties of large molecules. Careful benchmarks are required to establish their accuracy. Here, we report a validation of standard SQM methods using a subset of the comprehensive GMTKN24 database for general main group thermochemistry, kinetics, and noncovalent interactions, which has recently been introduced to evaluate density functional theory (DFT) methods ( J.

View Article and Find Full Text PDF

A recent study of the interaction of a lithium atom with the thiophene molecule found a large disagreement between high-level coupled cluster (CCSD(T)/AVTZ) and quantum Monte Carlo (fixed-node diffusion Monte Carlo, or FNDMC) calculations. We address this "lithium-thiophene riddle" by analyzing the influence of crucial FNDMC simulation parameters, namely, the one-electron models, basis sets, and pseudopotentials used for the generation of the trial wave function. These are shown to have a significant impact on the calculated FNDMC interaction energies, and good agreement between CCSD(T) and FNDMC is found when nodal hypersurfaces of sufficient quality are used.

View Article and Find Full Text PDF

Semiempirical methods could offer a feasible compromise between ab initio and empirical approaches for the calculation of large molecules with biological relevance. A key problem for attempts in this direction is the rather bad performance of current semiempirical methods for noncovalent interactions, especially hydrogen-bonding. On the basis of the recently introduced PM6-DH method, which includes empirical corrections for dispersion (D) and hydrogen-bond (H) interactions, we have developed an improved and transferable H-bonding correction for semiempirical quantum chemical methods.

View Article and Find Full Text PDF

A diversity-oriented approach for the generation of thermochemical benchmark sets is presented. Test sets consisting of randomly generated "artificial molecules" (AMs) are proposed that rely on systematic constraints rather than uncontrolled chemical biases. In this way, the narrow structural space of chemical intuition is opened up and electronically difficult cases can be produced in an unforeseeable manner.

View Article and Find Full Text PDF

Quantum Monte Carlo (QMC) calculations on the stacked (st) and Watson/Crick (wc) bound adenine/thymine (A/T) and cytosine/guanine (C/G) DNA base pair complexes were made possible with the first large scale distributed computing project in ab initio quantum chemistry, Quantum Monte Carlo at Home (QMC@HOME). The results for the interaction energies (wc-A/T = 15.7 kcal/mol, wc-C/G = 30.

View Article and Find Full Text PDF

The reaction energies for 34 typical organic isomerizations including oxygen and nitrogen heteroatoms are investigated with modern quantum chemical methods that have the perspective of also being applicable to large systems. The experimental reaction enthalpies are corrected for vibrational and thermal effects, and the thus derived "experimental" reaction energies are compared to corresponding theoretical data. A series of standard AO basis sets in combination with second-order perturbation theory (MP2, SCS-MP2), conventional density functionals (e.

View Article and Find Full Text PDF