Publications by authors named "Martin Kollmar"

Article Synopsis
  • The study investigates the evolution and function of SPIRE actin nucleators, crucial for organelle transport in mammalian cells.
  • SPIRE proteins are found in holozoans, including choanoflagellates, and they interact with various proteins to facilitate actin filament formation and organelle movement.
  • The findings suggest that SPIRE originated in unicellular ancestors of animals, potentially playing a key role in the development of more complex multicellular organisms.
View Article and Find Full Text PDF

Loss-of-function alleles of plant MLO genes confer broad-spectrum resistance to powdery mildews in many eudicot and monocot species. Although barley (Hordeum vulgare) mlo mutants have been used in agriculture for more than 40 years, understanding of the molecular principles underlying this type of disease resistance remains fragmentary. Forward genetic screens in barley have revealed mutations in two Required for mlo resistance (Ror) genes that partially impair immunity conferred by mlo mutants.

View Article and Find Full Text PDF

Heterologous protein expression is an important method for analysing cellular functions of proteins, in genetic circuit engineering and in overexpressing proteins for biopharmaceutical applications and structural biology research. The degeneracy of the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, plays an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the influence of a profiled codon usage adaptation approach on protein expression levels in the eukaryotic model organism Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Background: Yeasts of the CTG-clade lineage, which includes the human-infecting Candida albicans, Candida parapsilosis and Candida tropicalis species, are characterized by an altered genetic code. Instead of translating CUG codons as leucine, as happens in most eukaryotes, these yeasts, whose ancestors are thought to have lost the relevant leucine-tRNA gene, translate CUG codons as serine using a serine-tRNA with a mutated anticodon, [Formula: see text]. Previously reported experiments have suggested that 3-5% of the CTG-clade CUG codons are mistranslated as leucine due to mischarging of the [Formula: see text].

View Article and Find Full Text PDF

Coiled-coil regions were among the first protein motifs described structurally and theoretically. The simplicity of the motif promises that coiled-coil regions can be detected with reasonable accuracy and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled-coil prediction tools with respect to the most comprehensive reference data set available, the entire Protein Data Bank, down to each amino acid and its secondary structure.

View Article and Find Full Text PDF

The major transcript variants of human protein-coding genes are annotated to a certain degree of accuracy combining manual curation, transcript data, and proteomics evidence. However, there is considerable disagreement on the annotation of about 2000 genes-they can be protein-coding, noncoding, or pseudogenes-and on the annotation of most of the predicted alternative transcripts. Pure transcriptome mapping approaches seem to be limited in discriminating functional expression from noise.

View Article and Find Full Text PDF

Scipio and WebScipio are homology-based gene prediction software designed for annotating multigenic families and for transferring annotations from one species to closely related species. The strengths include the power to cope with sequencing-related problems such as sequencing errors and assemblies with short contigs but also the ability to correctly predict genes with unusually long introns and/or rather short exons. WebScipio is connected to diArk, the largest collection of eukaryotic genome assemblies, and thereby offers a very convenient way to correct existing annotations and to extend protein family datasets.

View Article and Find Full Text PDF

Although the "universal" genetic code is now known not to be universal, and stop codons can have multiple meanings, one regularity remains, namely that for a given sense codon there is a unique translation. Examining CUG usage in yeasts that have transferred CUG away from leucine, we here report the first example of dual coding: Ascoidea asiatica stochastically encodes CUG as both serine and leucine in approximately equal proportions. This is deleterious, as evidenced by CUG codons being rare, never at conserved serine or leucine residues, and predominantly in lowly expressed genes.

View Article and Find Full Text PDF

The diArk Eukaryotic Genome Database is a manually curated and updated repository of available eukaryotic genome and transcriptome assemblies. diArk is a key resource for researchers interested in comparative eukaryotic genomics, and the entry point to browsing sequenced eukaryotes in general and to find the most closely related species to the own organism of interest in particular. The exponentially increasing number of sequenced species demands sophisticated search and data presentation tools.

View Article and Find Full Text PDF

Stable single-alpha helices (SAH-domains) function as rigid connectors and constant force springs between structural domains, and can provide contact surfaces for protein-protein and protein-RNA interactions. SAH-domains mainly consist of charged amino acids and are monomeric and stable in polar solutions, characteristics which distinguish them from coiled-coil domains and intrinsically disordered regions. Although the number of reported SAH-domains is steadily increasing, genome-wide analyses of SAH-domains in eukaryotic genomes are still missing.

View Article and Find Full Text PDF

Mutually exclusive splicing of exons is a mechanism of functional gene and protein diversification with pivotal roles in organismal development and diseases such as Timothy syndrome, cardiomyopathy and cancer in humans. In order to obtain a first genomewide estimate of the extent and biological role of mutually exclusive splicing in humans, we predicted and subsequently validated mutually exclusive exons (MXEs) using 515 publically available RNA-Seq datasets. Here, we provide evidence for the expression of over 855 MXEs, 42% of which represent novel exons, increasing the annotated human mutually exclusive exome more than fivefold.

View Article and Find Full Text PDF

Background: The last eukaryotic common ancestor already had an amazingly complex cell possessing genomic and cellular features such as spliceosomal introns, mitochondria, cilia-dependent motility, and a cytoskeleton together with several intracellular transport systems. In contrast to the microtubule-based dyneins and kinesins, the actin-filament associated myosins are considerably divergent in extant eukaryotes and a unifying picture of their evolution has not yet emerged.

Results: Here, we manually assembled and annotated 7852 myosins from 929 eukaryotes providing an unprecedented dense sequence and taxonomic sampling.

View Article and Find Full Text PDF

Stable single-alpha helices (SAHs) are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind.

View Article and Find Full Text PDF

The canonical genetic code ubiquitously translates nucleotide into peptide sequence with several alterations known in viruses, bacteria, mitochondria, plastids, and single-celled eukaryotes. A new hypothesis to explain genetic code changes, termed tRNA loss driven codon reassignment, has been proposed recently when the polyphyly of the yeast codon reassignment events has been uncovered. According to this hypothesis, the driving force for genetic code changes are tRNA or translation termination factor loss-of-function mutations or loss-of-gene events.

View Article and Find Full Text PDF

mRNA decoding by tRNAs and tRNA charging by aminoacyl-tRNA synthetases are biochemically separated processes that nevertheless in general involve the same nucleotides. The combination of charging and decoding determines the genetic code. Codon reassignment happens when a differently charged tRNA replaces a former cognate tRNA.

View Article and Find Full Text PDF

The flagellum is a key innovation linked to eukaryogenesis. It provides motility by regulated cycles of bending and bend propagation, which are thought to be controlled by a complex arrangement of seven distinct dyneins in repeated patterns of outer- (OAD) and inner-arm dynein (IAD) complexes. Electron tomography showed high similarity of this axonemal repeat pattern across ciliates, algae, and animals, but the diversity of dynein sequences across the eukaryotes has not yet comprehensively been resolved and correlated with structural data.

View Article and Find Full Text PDF

There is growing evidence for a coupling of actin assembly and myosin motor activity in cells. However, mechanisms for recruitment of actin nucleators and motors on specific membrane compartments remain unclear. Here we report how Spir actin nucleators and myosin V motors coordinate their specific membrane recruitment.

View Article and Find Full Text PDF

Dystonia musculorum is a neurodegenerative disorder caused by a mutation in the dystonin gene. It has been described in mice and humans where it is called hereditary sensory autonomic neuropathy. Mutated mice show severe movement disorders and die at the age of 3-4 weeks.

View Article and Find Full Text PDF

The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve.

View Article and Find Full Text PDF

The nuclear lamina is a protein meshwork associated with the inner side of the nuclear envelope contributing structural, signalling and regulatory functions. Here, I report on the evolution of an important component of the lamina, the lamin intermediate filament proteins, across the eukaryotic tree of life. The lamins show a variety of protein domain and sequence motif architectures beyond the classical α-helical rod, nuclear localisation signal, immunoglobulin domain and CaaX motif organisation, suggesting extension and adaptation of functions in many species.

View Article and Find Full Text PDF

The universal genetic code defines the translation of nucleotide triplets, called codons, into amino acids. In many Saccharomycetes a unique alteration of this code affects the translation of the CUG codon, which is normally translated as leucine. Most of the species encoding CUG alternatively as serine belong to the Candida genus and were grouped into a so-called CTG clade.

View Article and Find Full Text PDF

Unlabelled: Conserved intron positions in eukaryotic genes can be used to reconstruct phylogenetic trees, to resolve ambiguous subfamily relationships in protein families and to infer the history of gene families. This version of GenePainter facilitates working with large datasets through options to select specific subsets for analysis and visualization, and through providing exhaustive statistics. GenePainter's application in phylogenetic analyses is considerably extended by the newly implemented integration of the exon-intron pattern conservation with phylogenetic trees.

View Article and Find Full Text PDF

Eukaryotic genomes are the basis for understanding the complexity of life from populations to the molecular level. Recent technological innovations have revolutionized the speed of data generation enabling the sequencing of eukaryotic genomes and transcriptomes within days. The database diArk (http://www.

View Article and Find Full Text PDF

Unlabelled: Waggawagga is a web-based tool for the comparative visualization of coiled-coil predictions and the detection of stable single α-helices (SAH domains). Overview schemes show the predicted coiled-coil regions found in the query sequence and provide sliders, which can be used to select segments for detailed helical wheel and helical net views. A window-based score has been developed to predict SAH domains.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqapfqua0b1oh56p1tt6ocu3gdk33k53i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once