Publications by authors named "Martin Klima"

The cooling of water clusters through evaporation into a vacuum is studied using classical molecular dynamics with the SPC water model, and the results are compared with macroscopic theory. A simple model based on the Hertz-Knudsen equation significantly underestimates cooling rates. A modified approach that accounts for the Kelvin equation provides better results.

View Article and Find Full Text PDF

Nsp14 is an RNA methyltransferase (MTase) encoded by all coronaviruses. In fact, many viral families, including DNA viruses, encode MTases that catalyze the methylation of the RNA precap structure, resulting in fully capped viral RNA. This capping is crucial for efficient viral RNA translation, stability, and immune evasion.

View Article and Find Full Text PDF

Flaviviruses are single-stranded positive-sense RNA (+RNA) viruses that are responsible for several (re)emerging diseases such as yellow, dengue, or West Nile fevers. The Zika epidemic highlighted their dangerousness when a relatively benign virus known since the 1950s turned into a deadly pathogen. The central protein for their replication is NS5 (non-structural protein 5), which is composed of the N-terminal methyltransferase (MTase) domain and the C-terminal RNA-dependent RNA-polymerase (RdRp) domain.

View Article and Find Full Text PDF

The cGAS-STING pathway is a crucial part of innate immunity; it serves to detect DNA in the cytoplasm and to defend against certain cancers, viruses, and bacteria. We designed and synthesized fluorinated carbocyclic cGAMP analogs, MD1203 and MD1202D (MDs), to enhance their stability and their affinity for STING. These compounds demonstrated exceptional activity against STING.

View Article and Find Full Text PDF

Using adiabatic molecular dynamics coupled with the fluid dynamics equations, we model nucleation in an expanding beam of water vapor and argon on a microsecond scale. The size distribution of clusters, their temperature, and pickup cross sections in dependence on velocity are investigated and compared to the geometric cross sections and the experiment. The clusters are warmer than the expanding gas because of the time scale of relaxation processes.

View Article and Find Full Text PDF

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target.

View Article and Find Full Text PDF
Article Synopsis
  • Cyclic dinucleotides (CDNs) activate the cGAS-STING pathway, crucial for immune response against infections and cancer, but previous CDN-based cancer therapies have had limited success in fully eliminating tumors.
  • Researchers developed a new class of vinylphosphonate-based CDNs, which showed significantly higher potency in lab tests compared to existing treatments.
  • The most promising prodrug in their studies induced effective T cell responses and reduced tumors in a mouse model, and they also elucidated the structure of the CDNs bound to the STING protein, paving the way for improved cancer immunotherapy treatments.
View Article and Find Full Text PDF

ORPs are lipid-transport proteins belonging to the oxysterol-binding protein family. They facilitate the transfer of lipids between different intracellular membranes, such as the ER and plasma membrane. We have solved the crystal structure of the ORP8 lipid transport domain (ORD8).

View Article and Find Full Text PDF

Mpox is a zoonotic disease caused by the mpox virus (MPXV), which has gained attention due to its rapid and widespread transmission, with reports from more than 100 countries. The virus belongs to the Orthopoxvirus genus, which also includes variola virus and vaccinia virus. In poxviruses, the RNA cap is crucial for the translation and stability of viral mRNAs and also for immune evasion.

View Article and Find Full Text PDF

The role the charge sign of simple ions plays in determining their surface affinity in aqueous solutions is investigated by computer simulation methods. For this purpose, the free surface of aqueous solutions of fictitious salts is simulated at finite concentration both with nonpolarizable point-charge and polarizable Gaussian-charge potential models. The salts consist of monovalent cations and anions that are, apart from the sign of their charge, identical to each other.

View Article and Find Full Text PDF

NMDA receptors (NMDARs) are ionotropic glutamate receptors that play a key role in excitatory neurotransmission. The number and subtype of surface NMDARs are regulated at several levels, including their externalization, internalization, and lateral diffusion between the synaptic and extrasynaptic regions. Here, we used novel anti-GFP (green fluorescent protein) nanobodies conjugated to either the smallest commercially available quantum dot 525 (QD525) or the several nanometer larger (and thus brighter) QD605 (referred to as nanoGFP-QD525 and nanoGFP-QD605, respectively).

View Article and Find Full Text PDF

Monkeypox is a disease with pandemic potential. It is caused by the monkeypox virus (MPXV), a double-stranded DNA virus from the Poxviridae family, that replicates in the cytoplasm and must encode for its own RNA processing machinery including the capping machinery. Here, we present crystal structures of its 2'-O-RNA methyltransferase (MTase) VP39 in complex with the pan-MTase inhibitor sinefungin and a series of inhibitors that were discovered based on it.

View Article and Find Full Text PDF
Article Synopsis
  • Seven coronaviruses have infected humans, with SARS-CoV-2 being the cause of the COVID-19 pandemic, which has severe health and economic impacts.
  • Other coronaviruses like MERS-CoV and SARS-CoV also led to significant outbreaks, while the remaining four cause less severe respiratory illnesses.
  • The study focuses on understanding the RNA methyltransferases nsp14 and nsp16, which are crucial for immune evasion and potential drug targets; it reports successful characterization of these proteins across several coronaviruses and suggests the potential for broad-spectrum therapeutics that inhibit both proteins.
View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDARs) play an essential role in excitatory neurotransmission in the mammalian brain, and their physiological importance is underscored by the large number of pathogenic mutations that have been identified in the receptor's GluN subunits and associated with a wide range of diseases and disorders. Here, we characterized the functional and pharmacological effects of the pathogenic N650K variant in the GluN1 subunit, which is associated with developmental delay and seizures. Our microscopy experiments showed that when expressed in HEK293 cells (from ATCC®), the GluN1-N650K subunit increases the surface expression of both GluN1/GluN2A and GluN1/GluN2B receptors, but not GluN1/GluN3A receptors, consistent with increased surface expression of the GluN1-N650K subunit expressed in hippocampal neurons (from embryonic day 18 of Wistar rats of both sexes).

View Article and Find Full Text PDF

Novel 4-aminoquinazoline-6-carboxamide derivatives bearing differently substituted aryl or heteroaryl groups at position 7 in the core were rationally designed, synthesized and evaluated for biological activity in vitro as phosphatidylinositol 4-kinase IIα (PI4K2A) inhibitors. The straightforward approach described here enabled the sequential, modular synthesis and broad functionalization of the scaffold in a mere six steps. The SAR investigation reported here is based on detailed structural analysis of the conserved binding mode of ATP and other adenine derivatives to the catalytic site of type II PI4Ks, combined with extensive docking studies.

View Article and Find Full Text PDF

SARS-CoV-2 nsp10-nsp16 complex is a 2'-O-methyltransferase (MTase) involved in viral RNA capping, enabling the virus to evade the immune system in humans. It has been considered a valuable target in the discovery of antiviral therapeutics, as the RNA cap formation is crucial for viral propagation. Through cross-screening of the inhibitors that we previously reported for SARS-CoV-2 nsp14 MTase activity against nsp10-nsp16 complex, we identified two compounds (SS148 and WZ16) that also inhibited nsp16 MTase activity.

View Article and Find Full Text PDF

Stimulator of interferon genes (STING) is an adaptor protein of the cGAS-STING signaling pathway involved in the sensing of cytosolic DNA. It functions as a receptor for cyclic dinucleotides (CDNs) and, upon their binding, mediates cytokine expression and host immunity. Besides naturally occurring CDNs, various synthetic CDNs, such as ADU-S100, have been reported to effectively activate STING and are being evaluated in clinical trials for the treatment of cancer.

View Article and Find Full Text PDF

Mycobacteria express enzymes from both the de novo and purine-salvage pathways. However, the regulation of these processes and the roles of individual metabolic enzymes have not been sufficiently detailed. Both Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msm) possess three guaB genes, but information is only available on guaB2, which encodes an essential inosine 5'-monophosphate dehydrogenase (IMPDH) involved in de novo purine biosynthesis.

View Article and Find Full Text PDF

Coronaviral methyltransferases (MTases), nsp10/16 and nsp14, catalyze the last two steps of viral RNA-cap creation that takes place in cytoplasm. This cap is essential for the stability of viral RNA and, most importantly, for the evasion of innate immune system. Non-capped RNA is recognized by innate immunity which leads to its degradation and the activation of antiviral immunity.

View Article and Find Full Text PDF

Expansion of water vapor through a small orifice to a vacuum produces liquid or frozen clusters which in the experiment serve as model particles for atmospheric aerosols. Yet, there are controversies about the shape of these clusters, suggesting that the nucleation process is not fully understood. Such questions can be answered by molecular dynamics simulations; however, they require microsecond-scale runs with thousands of molecules and accurate energy conservation.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease-19 pandemic. One of the key components of the coronavirus replication complex are the RNA methyltransferases (MTases), RNA-modifying enzymes crucial for RNA cap formation. Recently, the structure of the 2'- MTase has become available; however, its biological characterization within the infected cells remains largely elusive.

View Article and Find Full Text PDF

We report the crystal structure of the SARS-CoV-2 putative primase composed of the nsp7 and nsp8 proteins. We observed a dimer of dimers (2:2 nsp7-nsp8) in the crystallographic asymmetric unit. The structure revealed a fold with a helical core of the heterotetramer formed by both nsp7 and nsp8 that is flanked with two symmetry-related nsp8 β-sheet subdomains.

View Article and Find Full Text PDF

Picornaviruses infect a wide range of mammals including livestock such as cattle and swine. As with other picornavirus genera such as Aphthovirus, there is emerging evidence of a significant economic impact of livestock infections caused by members of the genera Enterovirus and Kobuvirus. While the human-infecting enteroviruses and kobuviruses have been intensively studied during the past decades in great detail, research on livestock-infecting viruses has been mostly limited to the genomic characterization of the viral strains identified worldwide.

View Article and Find Full Text PDF

Many picornaviruses hijack the Golgi resident Acyl-coenzyme A binding domain containing 3 (ACBD3) protein in order to recruit the phosphatidylinositol 4-kinase B (PI4KB) to viral replication organelles (ROs). PI4KB, once recruited and activated by ACBD3 protein, produces the lipid phosphatidylinositol 4-phosphate (PI4P), which is a key step in the biogenesis of viral ROs. To do so, picornaviruses use their small nonstructural protein 3A that binds the Golgi dynamics domain of the ACBD3 protein.

View Article and Find Full Text PDF

RNA-dependent RNA polymerase 3D is a key enzyme for the replication of picornaviruses. The viral genome is translated into a single polyprotein that is subsequently proteolytically processed into matured products. The 3D enzyme arises from a stable 3CD precursor that has high proteolytic activity but no polymerase activity.

View Article and Find Full Text PDF