The quantum mechanics-aided COSMO-SAC activity coefficient model is applied and systematically examined for predicting the thermodynamic compatibility of drugs and polymers. The drug-polymer compatibility is a key aspect in the rational selection of optimal polymeric carriers for pharmaceutical amorphous solid dispersions (ASD) that enhance drug bioavailability. The drug-polymer compatibility is evaluated in terms of both solubility and miscibility, calculated using standard thermodynamic equilibrium relations based on the activity coefficients predicted by COSMO-SAC.
View Article and Find Full Text PDFThe bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs) can be improved the formulation of an amorphous solid dispersion (ASD), where the API is incorporated into a suitable polymeric carrier. Optimal carriers that exhibit good compatibility (i.e.
View Article and Find Full Text PDFIn this work, the solid-liquid equilibrium (SLE) of four binary systems combining two active pharmaceutical ingredients (APIs) capable of forming co-amorphous systems (CAMs) was investigated. The binary systems studied were naproxen-indomethacin, naproxen-ibuprofen, naproxen-probucol, and indomethacin-paracetamol. The SLE was experimentally determined by differential scanning calorimetry.
View Article and Find Full Text PDFPrediction of compatibility of the active pharmaceutical ingredient (API) with the polymeric carrier plays an essential role in designing drug delivery systems and estimating their long-term physical stability. A key element in deducing API-polymer compatibility is knowledge of a complete phase diagram, i.e.
View Article and Find Full Text PDFA pair of popular thermodynamic models for pharmaceutical applications, namely, the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state and the conductor-like screening model for real solvents (COSMO-RS) are thoroughly benchmarked for their performance in predicting the solubility of active pharmaceutical ingredients (APIs) in pure solvents. The ultimate goal is to provide an illustration of what to expect from these progressive frameworks when applied to the thermodynamic solubility of APIs based on activity coefficients in a purely predictive regime without specific experimental solubility data (the fusion properties of pure APIs were taken from experiments). While this kind of prediction represents the typical of the first-principles-aided COSMO-RS, PC-SAFT is a relatively highly parametrized model that relies on experimental data, against which its pure-substance and binary interaction parameters () are fitted.
View Article and Find Full Text PDFTwo popular thermodynamic modeling frameworks, namely, the PC-SAFT equation of state and the COSMO-RS model, are benchmarked for their performance in predicting the thermodynamic properties of pure ionic liquids (ILs) and the solubility of CO in ILs. The ultimate goal is to provide an illustration of what to expect from these frameworks when applied to ILs in a purely predictive way with established parametrization approaches, since the literature generally lacks their mutual comparisons. Two different modeling approaches with respect to the description of the molecular structure of ILs are tested within both models: a cation-anion pair as (i) a single electroneutral supermolecule and (ii) a pair of separately modeled counterions (ion-based approach).
View Article and Find Full Text PDFMolecular dynamics simulations are used for predictions of the glass transition temperatures for a test set of five aprotic ionic liquids. Glass transitions are localized with the trend-shift method, analyzing volumetric and transport properties of bulk amorphous phases. A classical nonpolarizable all-atom OPLS force-field model developed by Canongia Lopes and Pádua (CL&P) is employed as a starting level of theory for all calculations.
View Article and Find Full Text PDFCommonly applied approaches to enhance the dissolution properties of low water-soluble crystalline active pharmaceutical ingredients (APIs) include their amorphization by incorporation into a polymeric matrix and the formation of amorphous solid dispersions, or blending APIs with low-molecular-weight excipients and the formation of a co-amorphous system. This study focused on the preparation and characterization of binary (consisting of indomethacin (IND) and polymer - copovidone (PVP VA 64), as a carrier, or amino acid - L-arginine (ARG), as a co-former) and ternary (comprising the same API, polymer, and amino acid) formulations. Formulations were produced by ball milling (BM) and/or hot-melt extrusion (HME), and extensive physicochemical characterization was performed.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2021
Molecular dynamics simulations are performed for a test set of 20 aprotic ionic liquids to investigate whether including an explicit polarizability model in the force field leads to higher accuracy and reliability of the calculated phase behavior properties, especially the enthalpy of fusion. A classical nonpolarizable all-atom optimized potentials for liquid simulations (OPLS) force-field model developed by Canongia Lopes and Pádua (CL&P) serves as a reference level of theory. Polarizability is included either in the form of Drude oscillators, resulting in the CL&P-D models, or in the framework of the atomic multipole optimized energetics for biomolecular application (AMOEBA) force field with polarizable atomic sites.
View Article and Find Full Text PDFKnowledge of the active pharmaceutical ingredient (API) solubility in a polymer is imperative for successful amorphous solid dispersion design and formulation but acquiring this information at storage temperature is challenging. Various solubility determination methods have been established, which utilize differential scanning calorimetry (DSC). In this work, three commonly used DSC-based protocols [i.
View Article and Find Full Text PDFThe preparation of an amorphous solid dispersion (ASD) is a promising strategy for improving the poor oral bioavailability of many active pharmaceutical ingredients (APIs). However, poor predictability of ASD long-term physical stability remains a prevalent problem. The purpose of this study was to evaluate and compare the predictive performance of selected models concerning solid-liquid equilibrium (SLE) curve and glass-transition temperature (T) line modeling of ibuprofen (IBU) in cellulosic polymers (i.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2019
Low volatility of ionic liquids (ILs), being one of their most valuable properties, is also the principal factor making reliable measurements of vapor pressures and vaporization (or sublimation) enthalpies of ILs extremely difficult. Alternatively, vaporization enthalpies at the temperature of the triple point can be obtained from the enthalpies of sublimation and fusion. While the latter can be obtained calorimetrically with a fair accuracy, the former is in principle accessible through ab initio computations.
View Article and Find Full Text PDF