In patients with Alzheimer's disease (AD) and in a triple transgenic (3xTgAD) mouse model of AD low glucose metabolism in the brain precedes loss of memory and cognitive decline. The metabolism of ketones in the brain by-passes glycolysis and therefore may correct several deficiencies that are associated with glucose hypometabolism. A dietary supplement composed of an ester of D-β-hydroxybutyrate and R-1,3 butane diol referred to as ketone ester (KE) was incorporated into a rodent diet and fed to 3xTgAD mice for 8 months.
View Article and Find Full Text PDFIn response to carbohydrate deprivation or prolonged fasting the ketone bodies, β-hydroxybutyrate (βHB) and acetoacetate (AcAc), are produced from the incomplete β-oxidation of fatty acids in the liver. Neither βHB nor AcAc are well utilized for synthesis of sterols or fatty acids in human or rat liver. To study the effects of ketones on cholesterol homeostasis a novel βHB ester (KE) ((R)-3-hydroxybutyl (R)-3-hydroxybutyrate) was synthesized and given orally to rats and humans as a partial dietary carbohydrate replacement.
View Article and Find Full Text PDFWe previously found that estrogen exerts a novel protective effect on mitochondria in brain vasculature. Here we demonstrate in rat cerebral blood vessels that 17β-estradiol (estrogen), both in vivo and ex vivo, affects key transcriptional coactivators responsible for mitochondrial regulation. Treatment of ovariectomized rats with estrogen in vivo lowered mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) but increased levels of the other PGC-1 isoforms: PGC-1β and PGC-1 related coactivator (PRC).
View Article and Find Full Text PDFAlthough most cases of Alzheimer's disease (AD) are sporadic, ∼5% of cases are genetic in origin. These cases, known as familial Alzheimer's disease (FAD), are caused by mutations that alter the rate of production or the primary structure of the amyloid β-protein (Aβ). Changes in the primary structure of Aβ alter the peptide's assembly and toxic activity.
View Article and Find Full Text PDFMitochondria support the energy-intensive functions of brain endothelium but also produce damaging-free radicals that lead to disease. Previously, we found that estrogen treatment protects cerebrovascular mitochondria, increasing capacity for ATP production while decreasing reactive oxygen species (ROS). To determine whether these effects occur specifically in endothelium in vivo and also explore underlying transcriptional mechanisms, we studied freshly isolated brain endothelial preparations from intact and ovariectomized female mice.
View Article and Find Full Text PDF