Publications by authors named "Martin Kangwa"

Article Synopsis
  • - A new continuous protein recovery and purification system uses a moving bed concept with a special woven fabric that acts as an adsorbent material, designed based on belt conveyor principles.
  • - The woven fabric demonstrated a high static protein binding capacity of 107.3 mg/g and showed good performance in a packed bed format with a dynamic binding capacity of 54.5 mg/g, even at high flow rates.
  • - A prototype system successfully recovered a model protein with a productivity of 0.5 mg/cm/h and isolated a monoclonal antibody with high purity from cell culture, demonstrating efficient and selective purification in just one step.
View Article and Find Full Text PDF

In integrated bioprocessing applications, expanded bed adsorption (EBA) chromatography presents an opportunity to harvest biomolecules directly from the crude feedstock. However, unfavorable biomass interactions with adsorbent usually leads to fouling, which reduces its protein binding capacity as it alters column hydrodynamics and binding site availability. In this work, a detailed study on biomass adhesion behavior of four different industrially relevant microorganisms on 26 different, most commonly occurring adsorbent surfaces with varying degrees of surface energy and surface charge has been conducted.

View Article and Find Full Text PDF

This study reports the optimization of milk-clotting protease production from Aspergillus oryzae DRDFS13 under solid-state fermentation (SSF) in both one-variable-at-a-time and response surface methodology (RSM). The production and optimization of milk-clotting protease obtained from Aspergillus oryzae DRDFS13 under solid-state fermentation (SSF) using different agro-industrial wastes as solid substrates were studied. The agro-industrial wastes used included wheat bran, rice bran, pea bran, and grass pea bran.

View Article and Find Full Text PDF

In antibody purification processes, affinity chromatography has been used with Staphylococcus aureus protein A (SpA) as the main ligand. In this work, we present a novel Staphylococcal Protein A (AviPure thereafter), a synthetic ligand analogue based on native SpA B domain, with a molecular weight of approximately 14 kDa. The binding affinity of mAbs to AviPure was evaluated using Surface Plasmon Resonance (SPR) and affinity chromatography methods.

View Article and Find Full Text PDF

Methylotrophic yeasts have widely been used as model organisms for understanding cellular functions and biochemical activities in lower eukaryotes. The gene encoding an aspartic protease (MCAP) from Mucor circinelloides DSM 2183 was cloned and expressed into Pichia pastoris using both the native M. circinelloides signal peptide (mcSP) and α-factor secretion signal from Saccharomyces cerevisiae (α-MF).

View Article and Find Full Text PDF
Article Synopsis
  • Research focuses on developing biocatalytic reactors and support materials for efficient ethanol production.
  • A Stirred-Catalytic-Basket-BioReactor using various immobilizing foams was tested against free cells, revealing that both stirrer speed and initial glucose concentration significantly influence ethanol yield and production time.
  • The study found that polyethylene sponges provide higher ethanol productivity than alginate beads or free cells, highlighting the potential of this reactor design for effective ethanol and fine chemical production.
View Article and Find Full Text PDF

The major platform for high level recombinant protein production is based on genetically modified microorganisms like Escherichia coli (E. coli) due to its short dividing time, ability to use inexpensive substrates and additionally, its genetics is comparatively simple, well characterized and can be manipulated easily. Here, we investigated the possibilities of finding the best media for high cell density fermentation, by analyzing different media samples, focusing on improving fermentation techniques and recombinant protein production.

View Article and Find Full Text PDF

The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration.

View Article and Find Full Text PDF

The influence of mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; flow rate, glucose concentration and polymers (chitosan). Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on external mass transfer by substrate consumption time, lag phase and ethanol production. The results indicate that coating has a significant effect on the lag phase duration, being 30-40 min higher than non-coated beads.

View Article and Find Full Text PDF

Background: Extracellular aspartic proteinase (MCAP) produced by Mucor circinelloides in solid state fermentations has been shown to possess milk clotting activity and represents a potential replacement for bovine chymosin in cheese manufacturing. Despite its prospects in the dairy industry, the molecular characteristics of this enzyme remain unknown. This work focuses on MCAP cloning and optimization of heterologous expression in Pichia pastoris, and characterization of the enzyme.

View Article and Find Full Text PDF