Publications by authors named "Martin K Patel"

Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers.

View Article and Find Full Text PDF

Our increasing demand for materials and energy has put critical roadblocks on our path towards a sustainable society. To remove these roadblocks, it is important to engage in smart research and development (R&D). We present an early-stage sustainability assessment framework that is used to analyze eight new bio-based process alternatives developed within the CatchBio research consortium in the Netherlands.

View Article and Find Full Text PDF

Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO(2)) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP).

View Article and Find Full Text PDF

The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines, by means of a multi-criteria approach, quantitative and qualitative proxy indicators describing economic, environmental, health and safety and operational aspects. Of twelve derivatives considered, five were categorized as favorable (diethyl ether, 1,3-butadiene, ethyl acetate, propylene and ethylene), two as promising (acetaldehyde and ethylene oxide) and five as unfavorable derivatives (acetic acid, n-butanol, isobutylene, hydrogen and acetone) for an integrated biorefinery concept.

View Article and Find Full Text PDF

If nanotechnology proves to be successful for bulk applications, large quantities of nanocomposites are likely to end up in municipal solid waste incineration (MSWI) plants. Various studies indicate that nanoobjects might be harmful to human health and the environment. At this moment there is no evidence that all nanoobjects are safely removed from the off-gas when incinerating nanocomposites in MSWI plants.

View Article and Find Full Text PDF

Three scenario projections for future market potentials of biobased bulk chemicals produced by means of white biotechnology are developed for Europe (EU-25) until the year 2050, and potential nonrenewable energy savings, greenhouse gas emission reduction, and land use consequences are analyzed. These scenarios assume benign, moderate, and disadvantageous conditions for biobased chemicals. The scenario analysis yields a broad range of values for the possible market development of white biotechnology chemicals, that is, resulting in a share of white biotechnology chemicals relative to all organic chemicals of about 7 (or 5 million tonnes), 17.

View Article and Find Full Text PDF

This article describes the development and application of a generic approach to the comparative assessment of risks related to the production of organic chemicals by petrochemical processes versus white biotechnology. White biotechnology, also referred to as industrial biotechnology, typically uses bio-based feedstocks instead of the fossil raw materials used in the petrochemical sector. The purpose of this study was to investigate whether the production of chemicals by means of white biotechnology has lower conventional risks than their production by petrochemical processes.

View Article and Find Full Text PDF

A cradle-to-grave environmental life cycle assessment (LCA) of a few poly(3-hydroxybutyrate) (PHB) based composites has been performed and was compared to commodity petrochemical polymers. The end products studied are a cathode ray tube (CRT) monitor housing (conventionally produced from high-impact polystyrene, HIPS) and the internal panels of an average car (conventionally produced from glass-fibers-filled polypropylene, PP-GF). The environmental impact is evaluated on the basis of nonrenewable energy use (NREU) and global warming potential over a 100 years time horizon (GWP100).

View Article and Find Full Text PDF