Publications by authors named "Martin Jurna"

Fractional photothermolysis uses lasers to generate a pattern of microscopic columnar thermal lesions within the skin stimulating collagen remodeling. In this paper we investigate the use of Bessel beams as an alternative to conventional Gaussian beams in creating laser photothermal lesions of different aspect ratios in skin. We show for the first time the improved photothermal lesion depth-to-diameter aspect ratio using Bessel beams in human skin as well as in numerical simulations using electric field Monte Carlo photon transport, finite difference methods and Arrhenius model.

View Article and Find Full Text PDF

Separation of skin epidermis from the dermis by suction blistering has been used with high success rate for autologous skin epidermal grafting in burns, chronic wounds and vitiligo transplantation treatment. Although commercial products that achieve epidermal grafting by suction blistering are presently available, there is still limited knowledge and understanding on the dynamic process of epidermal-dermal separation during suction blistering. In this report we integrated a suction system to an Optical Coherence Tomography (OCT) which allowed for the first time, real-time imaging of the suction blistering process in human skin.

View Article and Find Full Text PDF

We investigated the influence of thermal initiation pathway on the irradiance threshold for laser induced breakdown in transparent, absorbing and scattering phantoms. We observed a transition from laser-induced optical breakdown to laser-induced thermal breakdown as the absorption coefficient of the medium is increased. We found that the irradiance threshold after correction for the path length dependent absorption and scattering losses in the medium is lower due to the thermal pathway for the generation of seed electrons compared to the laser-induced optical breakdown.

View Article and Find Full Text PDF
Article Synopsis
  • Coherent anti-Stokes Raman scattering (CARS) microscopy is utilized for the first time to assess the protein structure of polyglutamine aggregates in living organisms, translating in vitro findings into an in vivo analysis.
  • The study shows that synthesized polyglutamine peptides form a rigid, cross β-sheet structure, as confirmed by Raman spectroscopy and X-ray diffraction methods.
  • The integration of CARS and fluorescence microscopy in C. elegans reveals distinct patterns of polyglutamine, highlighting areas with enhanced CARS signals compared to surrounding tissues, indicating its structural characteristics.
View Article and Find Full Text PDF

Detection of molecules using vibrational resonances in the fingerprint region for narrowband coherent anti-Stokes Raman scattering (CARS) is challenging. The spectrum is highly congested resulting in a large background and a reduced specificity. Recently we introduced vibrational phase contrast CARS (VPC-CARS) microscopy as a technique capable of detecting both the amplitude and phase of the CARS signal, providing background-free images and high specificity.

View Article and Find Full Text PDF

In coherent anti-Stokes Raman scattering (CARS), the emitted signal carries both amplitude and phase information of the molecules in the focal volume. Most CARS experiments ignore the phase component, but its detection allows for two advantages over intensity-only CARS. First, the pure resonant response can be determined, and the nonresonant background rejected, by extracting the imaginary component of the complex response, enhancing the sensitivity of CARS measurements.

View Article and Find Full Text PDF

Dissolution testing is a crucial part of pharmaceutical dosage form investigations and is generally performed by analyzing the concentration of the released drug in a defined volume of flowing dissolution medium. As solid-state properties of the components affect dissolution behavior to a large and sometimes even unpredictable extent there is a strong need for monitoring and especially visualizing solid-state properties during dissolution testing. In this study coherent anti-Stokes Raman scattering (CARS) microscopy was used to visualize the solid-state properties of lipid-based oral dosage forms containing the model drug theophylline anhydrate during dissolution in real time.

View Article and Find Full Text PDF