Publications by authors named "Martin Johnsson"

Keel bone damage, include deviations and fractures, is common in both white and brown laying hens, regardless of the housing system. Radiography for assessing birds' keel bones is was proposed by previous studies. However, radiographs show only 2 out of 3 dimensions of the dissected keel bones.

View Article and Find Full Text PDF

Most commercial laying hens suffer from sternum (keel) bone damage including deviations and fractures. X-raying hens, followed by segmenting and assessing the keel bone, is a key to automating the monitoring of keel bone condition. The aim of the current work is to train a deep learning model to segment the keel bone out of whole-body x-ray images.

View Article and Find Full Text PDF

DNA methylation is a key regulator of eukaryote genomes, and is of particular relevance in the regulation of gene expression on the sex chromosomes, with a key role in dosage compensation in mammalian XY systems. In the case of birds, dosage compensation is largely absent, with it being restricted to two small Male Hyper-Methylated (MHM) regions on the Z chromosome. To investigate how variation in DNA methylation is regulated on the Z chromosome we utilised a wild x domestic advanced intercross in the chicken, with both hypothalamic methylomes and transcriptomes assayed in 124 individuals.

View Article and Find Full Text PDF

Background: Bone damage has welfare and economic impacts on modern commercial poultry and is known as one of the major challenges in the poultry industry. Bone damage is particularly common in laying hens and is probably due to the physiological link between bone and the egg laying process. Previous studies identified and validated quantitative trait loci (QTL) for bone strength in White Leghorn laying hens based on several measurements, including bone composition measurements on the cortex and medulla of the tibia bone.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) aim at identifying genomic regions involved in phenotype expression, but identifying causative variants is difficult. Pig Combined Annotation Dependent Depletion (pCADD) scores provide a measure of the predicted consequences of genetic variants. Incorporating pCADD into the GWAS pipeline may help their identification.

View Article and Find Full Text PDF

Background: This paper describes genomics from two perspectives that are in use in animal breeding and genetics: a statistical perspective concentrating on models for estimating breeding values, and a sequence perspective concentrating on the function of DNA molecules.

Main Body: This paper reviews the development of genomics in animal breeding and speculates on its future from these two perspectives. From the statistical perspective, genomic data are large sets of markers of ancestry; animal breeding makes use of them while remaining agnostic about their function.

View Article and Find Full Text PDF

Chickens are believed to have inhabited the Hawaiian island of Kauai since the first human migrations around 1200AD, but numbers have peaked since the tropical storms Iniki and Iwa in the 1980s and 1990s that destroyed almost all the chicken coops on the island and released large numbers of domestic chickens into the wild. Previous studies have shown these now feral chickens are an admixed population between Red Junglefowl (RJF) and domestic chickens. Here, using genetic haplotypic data, we estimate the time of the admixture event between the feral population on the island and the RJF to 1981 (1976-1995), coinciding with the timings of storm Iwa and Iniki.

View Article and Find Full Text PDF

Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition, as well as body weight, in 860 commercial crossbred laying hens from 2 different companies, kept in either furnished cages or floor pens. We compared bone traits between housing systems and crossbreds and performed a genome-wide association study of bone properties and body weight.

View Article and Find Full Text PDF

Background: Early simulations indicated that whole-genome sequence data (WGS) could improve the accuracy of genomic predictions within and across breeds. However, empirical results have been ambiguous so far. Large datasets that capture most of the genomic diversity in a population must be assembled so that allele substitution effects are estimated with high accuracy.

View Article and Find Full Text PDF

Background: It is expected that functional, mainly missense and loss-of-function (LOF), and regulatory variants are responsible for most phenotypic differences between breeds and genetic lines of livestock species that have undergone diverse selection histories. However, there is still limited knowledge about the existing missense and LOF variation in commercial livestock populations, in particular regarding population-specific variation and how it can affect applications such as across-breed genomic prediction.

Methods: We re-sequenced the whole genome of 7848 individuals from nine commercial pig lines (average sequencing coverage: 4.

View Article and Find Full Text PDF

Background: Warmblood fragile foal syndrome (WFFS) is a monogenetic defect caused by a recessive lethal missense point mutation in the procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 gene (PLOD1, c.2032G>A). The majority of homozygous WFFS horses are aborted during gestation.

View Article and Find Full Text PDF

There is very little information about how the genome is regulated in domestic pigs (Sus scrofa). This lack of knowledge hinders efforts to define and predict the effects of genetic variants in pig breeding programs. To address this knowledge gap, we need to identify regulatory sequences in the pig genome starting with regions of open chromatin.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the genetic basis of backfat thickness in pigs, a key trait in pork production, using data from 275,590 pigs across eight different breeds.
  • A genome-wide association study identified 264 significant SNPs linked to backfat thickness, revealing 27 genomic regions with varying contributions to genetic variance.
  • The research highlights the polygenic nature of backfat thickness and identifies 64 candidate genes, including well-known ones like MC4R and IGF2, which are associated with fat metabolism.
View Article and Find Full Text PDF

Background: Body weight (BW) is an economically important trait in the broiler (meat-type chickens) industry. Under the assumption of polygenicity, a "large" number of genes with "small" effects is expected to control BW. To detect such effects, a large sample size is required in genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Background: This paper reviews the localization of published potential causative variants in contemporary pig and cattle reference genomes, and the evidence for their causality. In spite of the difficulties inherent to the identification of causative variants from genetic mapping and genome-wide association studies, researchers in animal genetics have proposed putative causative variants for several traits relevant to livestock breeding.

Results: For this review, we read the literature that supports potential causative variants in 13 genes (ABCG2, DGAT1, GHR, IGF2, MC4R, MSTN, NR6A1, PHGK1, PRKAG3, PLRL, RYR1, SYNGR2 and VRTN) in cattle and pigs, and localized them in contemporary reference genomes.

View Article and Find Full Text PDF

Breeding has increased genetic gain for dairy cattle in advanced economies but has had limited success in improving dairy cattle in low- to middle-income countries (LMIC). Genetic evaluations are a central component of delivering genetic gain, because they separate the genetic and environmental effects of animals' phenotypes. Genetic evaluations have been successful in advanced economies because of large data sets and strong genetic connectedness, provided by the widespread use of artificial insemination (AI) and accurate recording of pedigree information.

View Article and Find Full Text PDF

Background: Meiotic recombination results in the exchange of genetic material between homologous chromosomes. Recombination rate varies between different parts of the genome, between individuals, and is influenced by genetics. In this paper, we assessed the genetic variation in recombination rate along the genome and between individuals in the pig using multilocus iterative peeling on 150,000 individuals across nine genotyped pedigrees.

View Article and Find Full Text PDF

Domestic chickens are less fearful, have a faster sexual development, grow bigger, and lay more eggs than their primary ancestor, the red junglefowl. Several candidate genetic variants selected during domestication have been identified, but only a few studies have directly linked them with distinct phenotypic traits. Notably, a variant of the thyroid stimulating hormone receptor (TSHR) gene has been under strong positive selection over the past millennium, but it's function and mechanisms of action are still largely unresolved.

View Article and Find Full Text PDF

When individuals are measured more than once in the same context they do not behave in exactly the same way each time. The degree of predictability differs between individuals, with some individuals showing low levels of variation around their behavioural mean while others show high levels of variation. This intra-individual variability in behaviour has received much less attention than between-individual variability in behaviour, and very little is known about the underlying mechanisms that affect this potentially large but understudied component of behavioural variation.

View Article and Find Full Text PDF

Domestication is one of the strongest examples of artificial selection and has produced some of the most extreme within-species phenotypic variation known. In the case of the chicken, it has been hypothesized that DNA methylation may play a mechanistic role in the domestication response. By inter-crossing wild-derived red junglefowl with domestic chickens, we mapped quantitative trait loci for hypothalamic methylation (methQTL), gene expression (eQTL) and behaviour.

View Article and Find Full Text PDF

Identifying the molecular mechanisms of animal behaviour is an enduring goal for researchers. Gaining insight into these mechanisms enables us to gain a greater understanding of behaviour and their genetic control. In this paper, we perform Quantitative Trait Loci (QTL) mapping of tonic immobility behaviour in an advanced intercross line between wild and domestic chickens.

View Article and Find Full Text PDF

Background: In this paper, we simulate deleterious load in an animal breeding program, and compare the efficiency of genome editing and selection for decreasing it. Deleterious variants can be identified by bioinformatics screening methods that use sequence conservation and biological prior information about protein function. However, once deleterious variants have been identified, how can they be used in breeding?

Results: We simulated a closed animal breeding population that is subject to both natural selection against deleterious load and artificial selection for a quantitative trait representing the breeding goal.

View Article and Find Full Text PDF