Publications by authors named "Martin Jakubec"

Racemic 9,10-diketo[7]helicene was successfully separated into enantiomers using a reversible and stereoselective reaction with 2,2'-diamino-1,1'-binaphthalene with moderate yields but with remarkable purity (>99% de). The enantiomerically pure diketone was used as a convenient starting material for the preparation of helicene-based push-pull molecules, which incorporated aza-aryl acceptors and diarylaminophenylene donor groups in a single step. A series of six push-pull systems, along with three reference molecules without donors, were prepared and studied using UV/vis and fluorescence measurements, circular dichroism, and DFT calculations.

View Article and Find Full Text PDF

One way to mitigate the ongoing antimicrobial resistance crisis is to discover and develop new classes of antibiotics. As all antibiotics at some point need to either cross or just interact with the bacterial membrane, there is a need for representative models of bacterial membranes and efficient methods to characterize the interactions with novel molecules -both to generate new knowledge and to screen compound libraries. Since the bacterial cell envelope is a complex assembly of lipids, lipopolysaccharides, membrane proteins and other components, constructing relevant synthetic liposome-based models of the membrane is both difficult and expensive.

View Article and Find Full Text PDF

One strategy to combat antimicrobial resistance is the discovery of new classes of antibiotics. Most antibiotics will at some point interact with the bacterial membrane to either interfere with its integrity or to cross it. Reliable and efficient tools for determining the dissociation constant for membrane binding (K) and the partitioning coefficient between the aqueous- and membrane phases (K) are therefore important tools for discovering and optimizing antimicrobial hits.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are generally membrane-active compounds that physically disrupt bacterial membranes. Despite extensive research, the precise mode of action of AMPs is still a topic of great debate. This work demonstrates that the initial interaction between the Gram-negative and AMPs is driven by lipopolysaccharides (LPS) that act as kinetic barriers for the binding of AMPs to the bacterial membrane.

View Article and Find Full Text PDF

Lipids have been implicated in Parkinson's Disease (PD). We therefore studied the lipid profile of the neuroblastoma SH-SY5Y cell line, which is used extensively in PD research and compared it to that of the A431 epithelial cancer cell line. We have isolated whole cell extracts (WC) and plasma membrane (PM) fractions of both cell lines.

View Article and Find Full Text PDF

Interleukin (IL)-17 protects epithelial barriers by inducing the secretion of antimicrobial peptides. However, the effect of IL-17 on Paneth cells (PCs), the major producers of antimicrobial peptides in the small intestine, is unclear. Here, we show that the targeted ablation of the IL-17 receptor (IL-17R) in PCs disrupts their antimicrobial functions and decreases the frequency of ileal PCs.

View Article and Find Full Text PDF

RNA molecules can form secondary and tertiary structures that can regulate their localization and function. Using enzymatic or chemical probing together with high-throughput sequencing, secondary structure can be mapped across the entire transcriptome. However, a limiting factor is that only population averages can be obtained since each read is an independent measurement.

View Article and Find Full Text PDF

A synthetic strategy toward phosphahelicenes containing a terminal phosphinine ring has been explored. The 4-phenyl-6-methyl-2-phospha[7]helicene was prepared from starting 2-bromobenzo[]phenanthrene in 12% overall yield in 12 steps. The synthetic approach involves introduction of the phosphorus function prior to photocyclization forming the final helicene skeleton, followed by the formation of a phosphorus hexacycle.

View Article and Find Full Text PDF
Article Synopsis
  • * It investigates lulworthinone's mode of action, revealing it targets the bacterial membrane without destroying it, causing issues with cell division and activating stress response genes.
  • * The compound's ability to form colloidal aggregates is linked to its antibacterial effects, making it significant for future drug development against resistant bacteria, as resistance to membrane-targeting agents is harder to develop.
View Article and Find Full Text PDF

A series of aza[]helicenes ( = 4-7) was synthesized using a photocyclodehydrochlorination of 1-chloro--aryl-2-naphthamides as a general synthetic procedure introducing the nitrogen atom to the third ring of the helicene framework. The effect of the nitrogen presence in the helicene skeleton on the physicochemical properties of the prepared aza[]helicenes was studied and compared to those of the parent carbo-analogues. The insertion of a nitrogen atom into the outer edge of the helicene molecule has a severe impact on certain physicochemical properties such as optical rotation, electrostatic potentials, and intermolecular interactions.

View Article and Find Full Text PDF

Water/Ion NMR Detected - Phospholipid Vesicle Permeability Assay (WIND-PVPA), is presented as a novel, straightforward and automatable method to assess lipid barrier integrity in vitro. The apparent permeability constants of water- and ions across the PVPA barriers are determined in a one-pot experiment under the influence of membrane-active guest molecules. NMR spectroscopy is used to quantify the water directly (DO) and the ions indirectly (complexed with EDTA) as a function of time.

View Article and Find Full Text PDF

Supernova is a chemiluminescent deoxyribozyme recently discovered in our group. It transfers the phosphate group from the 1,2-dioxetane substrate CDP-Star to its 5' hydroxyl group, which triggers a decomposition reaction and the production of light. Here we investigated the effects of reaction conditions on the ability of Supernova to generate a chemiluminescent signal (using a plate reader assay) and to phosphorylate itself (using a ligation assay).

View Article and Find Full Text PDF

The effect of substitution on intermolecular interactions was investigated in a series of 1,6-anhydro-2,3-epimino-hexopyranoses. The study focused on the qualitative evaluation of intermolecular interactions using DFT calculations and the comparison of molecular arrangements in the crystal lattice. Altogether, ten crystal structures were compared, including two structures of C4-deoxygenated, four C4-deoxyfluorinated and four parent epimino pyranoses.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a glowing deoxyribozyme named Supernova through artificial evolution, which emits blue light during a chemical reaction.
  • This deoxyribozyme operates by transferring a phosphate from a specific substrate to trigger luminescence, and it requires a matching oligonucleotide for activation.
  • Supernova has potential applications in nanotechnology and synthetic biology, particularly in creating sensors and molecular computing logic gates.
View Article and Find Full Text PDF

A novel methodology for the synthesis of aza[]phenacenes was successfully developed utilizing photocyclodehydrochlorination reaction of 2-chloro--aryl-1-naphthamides. In these key intermediates, the factors influencing the photoreaction were studied. The target aza[]phenacenes were obtained by triflation or chlorination from prepared phenanthridinones, followed by hydrogenation.

View Article and Find Full Text PDF

The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers.

View Article and Find Full Text PDF

The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle.

View Article and Find Full Text PDF

This work reports on the preparation and structural characterization of flavo[7]helicene 1 (flavin-[7]helicene conjugate), which was subsequently characterized at the molecular level in either an aqueous environment or an organic phase, at the supramolecular level in the form of polymeric layers, and also embedded in a lipidic mesophase environment to study the resulting properties of such a hybrid relative to its parent molecules. The flavin benzo[g]pteridin-2,4-dione (isoalloxazine) was selected for conjugation because of its photoactivity and reversible redox behavior. Compound 1 was prepared from 2-nitroso[6]helicene and 6-methylamino-3-methyluracil, and characterized using common structural and spectroscopic tools: circular dichroism (CD), circularly polarized luminescence (CPL) spectroscopy, cyclic voltammetry (CV), and DFT quantum calculations.

View Article and Find Full Text PDF

Helicenes, chiral members of the family of polyaromatic hydrocarbons, have been increasingly used in a variety of applications in recent years. Despite their intriguing properties, wider utilization is hindered by difficult functionalization of its skeleton, which would provide access to finely tuned derivatives of desired properties. Herein, the recent advancements in the field of helicene functionalization are discussed with an emphasis on different types of transformations, their versatility, and regioselectivity.

View Article and Find Full Text PDF

Exosomes are vesicles involved in intercellular communication. Their membrane structure and core content is largely dependent on the cell of origin. Exosomes have been investigated both for their biological roles and their possible use as disease biomarkers and drug carriers.

View Article and Find Full Text PDF

Dysregulation of the biosynthesis of cholesterol and other lipids has been implicated in many neurological diseases, including Parkinson's disease. Misfolding of α-synuclein (α-Syn), the main actor in Parkinson's disease, is associated with changes in a lipid environment. However, the exact molecular mechanisms underlying cholesterol effect on α-Syn binding to lipids as well as α-Syn oligomerization and fibrillation remain elusive, as does the relative importance of cholesterol compared to other factors.

View Article and Find Full Text PDF

A straightforward visible-light-promoted oxidation of aminohelicenes providing helical -diketones is described. It is shown that the oxidation of amines proceeds via [2 + 2]-cycloaddition reaction with singlet oxygen as an oxidizer and the reaction is specific to distorted aromatic systems. The versatility of the prepared diketones and tetraketones was proven in several heterocycle-forming reactions.

View Article and Find Full Text PDF

Marine sponges and soft corals have yielded novel compounds with antineoplastic and antimicrobial activities. Their mechanisms of action are poorly understood, and in most cases, little relevant experimental evidence is available on this topic. In the present study, we investigated whether agelasine D (compound ) and three agelasine analogs (compound -) as well as malonganenone J (compound ), affect the physical properties of a simple lipid model system, consisting of dioleoylphospahtidylcholine and dioleoylphosphatidylethanolamine.

View Article and Find Full Text PDF

Global lipid analysis still lags behind proteomics with respect to the availability of databases, experimental protocols, and specialized software. Determining the lipidome of cellular model systems in common use is of particular importance, especially when research questions involve lipids directly. In Parkinson's disease research, there is a growing awareness for the role of the biological membrane, where individual lipids may contribute to provoking α-synuclein oligomerisation and fibrillation.

View Article and Find Full Text PDF

Herein, a visible-light photochemical approach for practical helicene functionalization at very mild reaction conditions is described. The photochemical reactions allow for the regiospecific and innate late-stage functionalization of helicenes and are easily executed either through the activation of C(sp )-Br bonds in helicenes using K CO as inorganic base or direct C(sp )-H helicene bond functionalization under oxidative photoredox reaction conditions. Overall, using these transformations six different functional groups are introduced to the helicene scaffold through C-C and four different C-heteroatom bond-forming reactions.

View Article and Find Full Text PDF