Publications by authors named "Martin J Stoddart"

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability.

View Article and Find Full Text PDF

The field of bone tissue engineering aims to develop an effective and aesthetical bone graft substitute capable of repairing large mandibular defects. However, graft failure resulting from necrosis and insufficient integration with native tissue due to lack of oxygen and nutrient transportation remains a concern. To overcome these drawbacks, this study aims to develop a 3D printed polycaprolactone layered construct with a LEGO-inspired interlocking mechanism enabling spatial distribution of biological components.

View Article and Find Full Text PDF

Fracture non-unions affect many patients worldwide, however, known risk factors alone do not predict individual risk. The identification of novel biomarkers is crucial for early diagnosis and timely patient treatment. This study focused on the identification of microRNA (miRNA) related to the process of fracture healing.

View Article and Find Full Text PDF

Osteochondral defect (OCD) is a common but challenging condition in orthopaedics that imposes huge socioeconomic burdens in our aging society. It is imperative to accelerate the R&D of regenerative scaffolds using osteochondral tissue engineering concepts. Yet, all innovative implant-based treatments require animal testing models to verify their feasibility, biosafety, and efficacy before proceeding to human trials.

View Article and Find Full Text PDF

Background: Physiological 0.9% saline is commonly used as an irrigation fluid in modern arthroscopy. There is a growing body of evidence that a hyperosmolar saline solution has chondroprotective effects, especially if iatrogenic injury occurs.

View Article and Find Full Text PDF

Novel cartilage regeneration therapies often look promising but fail when implanted One of the possible reasons for this discrepancy is the simplified, static chondrogenesis models typically used. Complex mechanical stimulation plays a key role in physiological cartilage and chondrogenic cell metabolism, including the development of cartilage structure, yet it is routinely lacking during studies. Multiaxial load bioreactors are becoming more widespread and offer advantages over more simple loading devices.

View Article and Find Full Text PDF

Human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are often combined with calcium phosphate (CaP)-based 3D-printed scaffolds with the goal of creating a bone substitute that can repair segmental bone defects, the induction of osteogenic differentiation traditionally requires, among other supplements, the addition of β-glycerophosphate (BGP), which acts as a phosphate source. The aim of this study is to investigate whether phosphate contained within the 3D-printed scaffolds can effectively be used as a phosphate source during hBM-MSC osteogenesis. hBM-MSCs are cultured on 3D-printed discs composed of poly (lactic-co-glycolic acid) (PLGA) and β-tricalcium phosphate (β-TCP) for 28 days under osteogenic conditions, with and without the supplementation of BGP.

View Article and Find Full Text PDF

The 3D printing process of fused deposition modelling is an attractive fabrication approach to create tissue-engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold's surface upon solvent removal, without the need for further post processing. Our aim is to create and characterize porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) and osteoconductive β-tricalcium phosphate with and without the addition of elastic thermoplastic polyurethane prepared by solvent-based 3D-printing technique.

View Article and Find Full Text PDF

Background: The use of acellular hydrogels to repair osteochondral defects requires cells to first invade the biomaterial and then to deposit extracellular matrix for tissue regeneration. Due to the diverse physicochemical properties of engineered hydrogels, the specific properties that allow or even improve the behaviour of cells are not yet clear. The aim of this study was to investigate the influence of various physicochemical properties of hydrogels on cell migration and related tissue formation using , and models.

View Article and Find Full Text PDF

The glucocorticoid receptor (GR) is a nuclear receptor that controls critical biological processes by regulating the transcription of specific genes. GR transcriptional activity is modulated by a series of ligands and coenzymes, where a ligand can act as an agonist or antagonist. GR agonists, such as the glucocorticoids dexamethasone (DEX) and prednisolone, are widely prescribed to patients with inflammatory and autoimmune diseases.

View Article and Find Full Text PDF

Since its discovery in 1989, RNA interference (RNAi) has become a widely used tool for the in vitro downregulation of specific gene expression in molecular biological research. This basically involves a complementary RNA that binds a target sequence to affect its transcription or translation process. Currently, various small RNAs, such as small interfering RNA (siRNA), micro RNA (miRNA), small hairpin RNA (shRNA), and PIWI interacting RNA (piRNA), are available for application on in vitro cell culture, to regulate the cells' gene expression by mimicking the endogenous RNAi-machinery.

View Article and Find Full Text PDF

Cartilage tissue engineering necessitates the right mechanical cues to regenerate impaired tissue. For this reason, bioreactors can be employed to induce joint-relevant mechanical loading, such as compression and shear. However, current articulating joint bioreactor designs are lacking in terms of sample size and usability.

View Article and Find Full Text PDF

Pneumonia, always a major malady, became the main public health and economic disaster of historical proportions with the COVID-19 pandemic. This study was based on a premise that pathology of lung metabolism in inflammation may have features invariant to the nature of the underlying cause. Amino acid uptake by the lungs was measured from plasma samples collected pre-terminally from a carotid artery and vena cava in mice with bleomycin-induced lung inflammation (N = 10) and compared to controls treated with saline instillation (N = 6).

View Article and Find Full Text PDF

Background: Approximately 10% of all bone fractures result in delayed fracture healing or non-union; thus, the identification of biomarkers and prognostic factors is of great clinical interest. MicroRNAs (miRNAs) are known to be involved in the regulation of the bone healing process and may serve as functional markers for fracture healing.

Aims And Methods: This systematic review aimed to identify common miRNAs involved in fracture healing or non-union fractures using a qualitative approach.

View Article and Find Full Text PDF

The early postnatal limb developmental progression bridges embryonic and mature stages and mirrors the pathological remodeling of articular cartilage. However, compared with multitudinous research on embryonic limb development, the early postnatal stage seems relatively unnoticed. Here, a systematic work to portray the postnatal limb developmental landscape was carried out by characterization of 19,952 single cells from murine hindlimbs at 4 postnatal stages using single-cell RNA sequencing technique.

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stromal cells (BMSCs) are promising for therapeutic use in cartilage repair, because of their capacity to differentiate into chondrocytes. Often, in vitro differentiation protocols employ the use of high amount of glucose, which does not reflect cartilage physiology. For this reason, we investigated how different concentrations of glucose can affect the chondrogenic differentiation of BMSCs in cell culture pellets.

View Article and Find Full Text PDF

The labrum is a fibrocartilaginous ring surrounding the acetabulum. Loss of labrum function contributes to the degeneration of the hip joint, leading to osteoarthritis. Successful labrum restoration requires profound knowledge about the tissue being replaced.

View Article and Find Full Text PDF

Mesenchymal-derived stromal or progenitor cells, commonly called "MSCs," have attracted significant clinical interest for their remarkable abilities to promote tissue regeneration and reduce inflammation. Recent studies have shown that MSCs' therapeutic effects, originally attributed to the cells' direct differentiation capacity into the tissue of interest, are largely driven by the biomolecules the cells secrete, including cytokines, chemokines, growth factors, and extracellular vesicles containing miRNA. This secretome coordinates upregulation of endogenous repair and immunomodulation in the local microenvironment through crosstalk of MSCs with host tissue cells.

View Article and Find Full Text PDF

Co-culturing is an essential method for unravelling the importance of cross talk and cellular interaction. This chapter describes the preparation of an indirect co-culture technique based on encapsulation of chondrocytes and mesenchymal stromal cells in polyurethane scaffolds and alginate beads, respectively. This way, both cell populations can communicate through paracrine effects in the absence of cell-cell contact.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stromal cells (BM-MSC) are widely studied in the field of cartilage regeneration due to their capacity to differentiate into chondrocytes under specific in vitro culture conditions. This chapter describes the isolation of MSC from bone marrow aspirate, their expansion in monolayer, and the chondrogenic differentiation in pellet culture.

View Article and Find Full Text PDF

Once damaged, cartilage has limited healing capability. This has led to a huge body of research that aims to repair or regenerate this important tissue. Despite the progress made, significant hurdles still need to be overcome.

View Article and Find Full Text PDF

Chondrogenic models utilizing human mesenchymal stromal cells (hMSCs) are often simplistic, with a single cell type and the absence of mechanical stimulation. Considering the articulating joint as an organ it would be beneficial to include more complex stimulation. Within this study we applied clinically relevant kinematic load to biphasic constructs.

View Article and Find Full Text PDF

In most cases, bone injuries heal without complications, however, there is an increasing number of instances where bone healing needs major clinical intervention. Available treatment options have severe drawbacks, such as donor site morbidity and limited availability for autografting. Bone graft substitutes containing growth factors would be a viable alternative, however they have been associated with dose-related safety concerns and lack control over spatial architecture to anatomically match bone defect sites.

View Article and Find Full Text PDF

Understanding the optimal conditions required for bone healing can have a substantial impact to target the problem of non-unions and large bone defects. The combination of bioactive factors, regenerative progenitor cells and biomaterials to form a tissue engineered (TE) complex is a promising solution but translation to the clinic has been slow. We hypothesized the typical material testing algorithm used is insufficient and leads to materials being mischaracterized as promising.

View Article and Find Full Text PDF