A Landau-de Gennes formulation coupled with a mass-transfer equation was used to track the evaporation front and the development of chiral microstructures during the casting of sulfuric acid-hydrolyzed cellulose nanocrystal (CNC) films. These simulations are compared to thin-film casting experiments that used analogous processing parameters and environments. The results show that the initial concentration, chiral strength, surface anchoring, speed of drying, and the influence of initial shear alignment all affect the uniformity of the microstructure and the orientation of the chiral director.
View Article and Find Full Text PDFMaterial extrusion (ME) 3D printing is a revolutionary technique for manufacturing thermoplastic parts; however, the printed parts typically suffer from poor interlayer bonding, which causes weak tensile strength in the build direction. Many methods have been proposed to address the mechanical deficiencies of 3D-printed parts, but most fall short of a production-ready solution. Here we report the use of a dielectric barrier discharge (DBD) plasma electrode mounted concentrically around the nozzle of an ME 3D printer for welding of thermoplastic parts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2018
Here, we give the first-ever report of radio frequency (RF) electromagnetic heating of polymer nanocomposite materials via direct-contact and capacitively coupled electric field applicators. Notably, RF heating allows nanocomposite materials to be resistively heated with electric fields. We highlight our novel RF heating technique for multiwalled carbon nanotube (MWCNT) thermoplastic composites and measure their broadband dielectric properties.
View Article and Find Full Text PDFAdditive manufacturing through material extrusion, often termed three-dimensional (3D) printing, is a burgeoning method for manufacturing thermoplastic components. However, a key obstacle facing 3D-printed plastic parts in engineering applications is the weak weld between successive filament traces, which often leads to delamination and mechanical failure. This is the chief obstacle to the use of thermoplastic additive manufacturing.
View Article and Find Full Text PDFUsing coarse-grained Brownian dynamics simulations, we study the relationship between hydrodynamic radius ([Formula: see text] and the lateral size ([Formula: see text] of dispersed nanosheets. Our simulation results show that the bending modulus of the nanosheets has a significant impact on the exponent of this power-law relationship between the radius of gyration (and thus [Formula: see text] and [Formula: see text] The exponent can vary from 0.17 to 1.
View Article and Find Full Text PDF