Publications by authors named "Martin J Hussey"

Rationale: The incidence of pulmonary arterial hypertension is greater in women, suggesting estrogens may play a role in the disease pathogenesis. Experimentally, in males, exogenously administered estrogen can protect against pulmonary hypertension (PH). However, in models that display female susceptibility, estrogens may play a causative role.

View Article and Find Full Text PDF

As we uncover the complex pathophysiology underlying idiopathic and familial pulmonary arterial hypertension, multiple disease associated pathways, cell types and processes reveal links to elements of the serotonin system. Beyond the original 'serotonin hypothesis' observed with anorexigens, and the latterly demonstrated association with vascular tone and pulmonary artery smooth muscle cell proliferation, recent studies suggest links to BMPR2, PDGF and RhoK pathways, as well as an impact upon more complex lesion formation and pathologic bone marrow progenitor mobilization. Clinical experience with antagonists targeting the various elements of the serotonin pathway has been unsatisfactory, yet perhaps this is less than surprising given our expanding knowledge around serotonin production and signaling biology, which indicate opportunities for novel therapeutic options.

View Article and Find Full Text PDF

Rationale: Whether idiopathic, familial, or secondary to another disease, pulmonary arterial hypertension (PAH) is characterized by increased vascular tone, neointimal hyperplasia, medial hypertrophy, and adventitial fibrosis. Imatinib, a potent receptor tyrosine kinase inhibitor, reverses pulmonary remodeling in animal models of PAH and improves hemodynamics and exercise capacity in selected patients with PAH.

Objectives: Here we use both imatinib and knockout animals to determine the relationship between platelet-derived growth factor receptor (PDGFR) and serotonin signaling and investigate the PAH pathologies each mediates.

View Article and Find Full Text PDF

Adenosine is a neuromodulator with complex effects on pain pathways. Mice lacking the adenosine A2A receptor are hypoalgesic, and have altered analgesic responses to receptor-selective opioid agonists. These and other findings suggest a role for the adenosine A2A receptor in sensitizing afferent fibres projecting to the spinal cord.

View Article and Find Full Text PDF