Publications by authors named "Martin J Blunt"

Conventional measurements of two-phase flow in porous media often use completely immiscible fluids, or are performed over time scales of days to weeks. If applied to the study of gas storage and recovery, these measurements do not properly account for Ostwald ripening, significantly overestimating the amount of trapping and hysteresis. When there is transport of dissolved species in the aqueous phase, local capillary equilibrium is achieved: this may take weeks to months on the centimeter-sized samples on which measurements are performed.

View Article and Find Full Text PDF

The performance of nano- and micro-porous materials in capturing and releasing fluids, such as during CO geo-storage and water/gas removal in fuel cells and electrolyzers, is determined by their wettability in contact with the solid. However, accurately characterizing wettability is challenging due to spatial variations in dynamic forces, chemical heterogeneity, and surface roughness. In situ measurements can potentially measure wettability locally as a contact angle - the angle a denser phase (e.

View Article and Find Full Text PDF

Despite recent advances in pore-scale modeling of two-phase flow through porous media, the relative strengths and limitations of various modeling approaches have been largely unexplored. In this work, two-phase flow simulations from the generalized network model (GNM) [Phys. Rev.

View Article and Find Full Text PDF

The equilibrium configuration of a gas and brine in a porous medium, and the timescales to reach equilibrium, are investigated analytically. If the gas is continuous in the pore space, we have the traditional gravity-capillary transition zone: P_{c}(S_{w})=Δρgz where P_{c} is the capillary pressure (pressure difference between the gas and aqueous phases), S_{w} is the aqueous phase (brine) saturation, Δρ=ρ_{w}-ρ_{g} is the density difference between the phases, g is the gravitational acceleration, and z is a vertical distance coordinate increasing upwards, where z=0 indicates the level where P_{c}=0. However, if the gas is disconnected, as may occur during water influx in carbon dioxide and hydrogen storage, then the nature of equilibrium is different where diffusion through the aqueous phase (Ostwald ripening) maintains a capillary pressure gradient consistent with the thermodynamically-determined brine density as a function of depth: P_{c}=P^{*}[e^{(V_{g}ρ_{w}-m_{g})gz/RT}-1]+ρ_{w}gz, where P^{*} is the aqueous phase pressure at z=0, V_{g} is the specific molar volume of the gas dissolved in the aqueous phase, m_{g} is the molecular mass of the gas, R is the universal gas constant, and T is the absolute temperature.

View Article and Find Full Text PDF

Hypothesis: The wettability change from oil-wet towards more water-wet conditions by injecting diluted brine can improve oil recovery from reservoir rocks, known as low salinity waterflooding. We investigated the underlying pore-scale mechanisms of this process to determine if improved recovery was associated with a change in local contact angle, and if additional displacement was facilitated by the formation of micro-dispersions of water in oil and water film swelling.

Experiments: X-ray imaging and high-pressure and temperature flow apparatus were used to investigate and compare high and low salinity waterflooding in a carbonate rock sample.

View Article and Find Full Text PDF

Hypothesis: Imbibition of a fluid into a porous material involves the invasion of a wetting fluid in the pore space through piston-like displacement, film and corner flow, snap-off and pore bypassing. These processes have been studied extensively in two-dimensional (2D) porous systems; however, their relevance to three-dimensional (3D) natural porous media is poorly understood. Here, we investigate these pore-scale processes in a natural rock sample using time-resolved 3D (i.

View Article and Find Full Text PDF

X-ray micro-tomography combined with a high-pressure high-temperature flow apparatus and advanced image analysis techniques were used to image and study fluid distribution, wetting states and oil recovery during low salinity waterflooding (LSW) in a complex carbonate rock at subsurface conditions. The sample, aged with crude oil, was flooded with low salinity brine with a series of increasing flow rates, eventually recovering 85% of the oil initially in place in the resolved porosity. The pore and throat occupancy analysis revealed a change in fluid distribution in the pore space for different injection rates.

View Article and Find Full Text PDF

Extending the operating range of fuel cells to higher current densities is limited by the ability of the cell to remove the water produced by the electrochemical reaction, avoiding flooding of the gas diffusion layers. It is therefore of great interest to understand the complex and dynamic mechanisms of water cluster formation in an operando fuel cell setting as this can elucidate necessary changes to the gas diffusion layer properties with the goal of minimizing the number, size, and instability of the water clusters formed. In this study, we investigate the cluster formation process using X-ray tomographic microscopy at 1 Hz frequency combined with interfacial curvature analysis and volume-of-fluid simulations to assess the pressure evolution in the water phase.

View Article and Find Full Text PDF

Fast synchrotron tomography is used to study the impact of capillary number, Ca, on fluid configurations in steady-state two-phase flow in porous media. Brine and n-decane were co-injected at fixed fractional flow, f_{w}=0.5, in a cylindrical Bentheimer sandstone sample for a range of capillary numbers 2.

View Article and Find Full Text PDF

Over the last century, the state of stress in the earth's upper crust has undergone rapid changes because of human activities associated with fluid withdrawal and injection in subsurface formations. The stress dependency of multiphase flow mechanisms in earth materials is a substantial challenge to understand, quantify, and model for many applications in groundwater hydrology, applied geophysics, CO subsurface storage, and the wider geoenergy field (e.g.

View Article and Find Full Text PDF

We use synchrotron X-ray micro-tomography to investigate the displacement dynamics during three-phase-oil, water and gas-flow in a hydrophobic porous medium. We observe a distinct gas invasion pattern, where gas progresses through the pore space in the form of disconnected clusters mediated by double and multiple displacement events. Gas advances in a process we name three-phase Haines jumps, during which gas re-arranges its configuration in the pore space, retracting from some regions to enable the rapid filling of multiple pores.

View Article and Find Full Text PDF

Formation damage is one of the most challenging problems that occurs during the lifetime of a well. Despite numerous previous studies, an organized review of the literature that introduces and describes the digital and analytical approaches developed for formation damage analysis is lacking. This study aims to fill this gap through briefly describing the main mechanisms behind formation damage in porous media as well as investigating the main related experimental methods with an emphasis on novel imaging techniques.

View Article and Find Full Text PDF

We use fast synchrotron x-ray microtomography to investigate the pore-scale dynamics of water injection in an oil-wet carbonate reservoir rock at subsurface conditions. We measure, in situ, the geometric contact angles to confirm the oil-wet nature of the rock and define the displacement contact angles using an energy-balance-based approach. We observe that the displacement of oil by water is a drainagelike process, where water advances as a connected front displacing oil in the center of the pores, confining the oil to wetting layers.

View Article and Find Full Text PDF

A pore-network model is an upscaled representation of the pore space and fluid displacement, which is used to simulate two-phase flow through porous media. We use the results of pore-scale imaging experiments to calibrate and validate our simulations, and specifically to find the pore-scale distribution of wettability. We employ energy balance to estimate an average, thermodynamic, contact angle in the model, which is used as the initial estimate of contact angle.

View Article and Find Full Text PDF

We identify a distinct two-phase flow invasion pattern in a mixed-wet porous medium. Time-resolved high-resolution synchrotron X-ray imaging is used to study the invasion of water through a small rock sample filled with oil, characterized by a wide non-uniform distribution of local contact angles both above and below 90. The water advances in a connected front, but throats are not invaded in decreasing order of size, as predicted by invasion percolation theory for uniformly hydrophobic systems.

View Article and Find Full Text PDF

Hypothesis: We define contact angles, θ, during displacement of three fluid phases in a porous medium using energy balance, extending previous work on two-phase flow. We test if this theory can be applied to quantify the three contact angles and wettability order in pore-scale images of three-phase displacement.

Theory: For three phases labelled 1, 2 and 3, and solid, s, using conservation of energy ignoring viscous dissipation (Δacosθ-Δa-ϕκΔS)σ=(Δacosθ+Δa-ϕκΔS)σ+Δaσ, where ϕ is the porosity, σ is the interfacial tension, a is the specific interfacial area, S is the saturation, and κ is the fluid-fluid interfacial curvature.

View Article and Find Full Text PDF

Hypothesis: Based on energy balance during two-phase displacement in porous media, it has recently been shown that a thermodynamically consistent contact angle can be determined from micro-tomography images. However, the impact of viscous dissipation on the energy balance has not been fully understood. Furthermore, it is of great importance to determine the spatial distribution of wettability.

View Article and Find Full Text PDF

Rapid implementation of global scale carbon capture and storage is required to limit temperature rises to 1.5 °C this century. Depleted oilfields provide an immediate option for storage, since injection infrastructure is in place and there is an economic benefit from enhanced oil recovery.

View Article and Find Full Text PDF

Hypothesis: The development of high-resolution in situ imaging has allowed contact angles to be measured directly inside porous materials. We evaluate the use of concepts in integral geometry to determine contact angle. Specifically, we test the hypothesis that it is possible to determine an average contact angle from measurements of the Gaussian curvature of the fluid/fluid meniscus using the Gauss-Bonnet theorem.

View Article and Find Full Text PDF

Hypothesis: The change of wettability toward more water-wet by the injection of low salinity water can improve oil recovery from porous rocks, which is known as low salinity water flooding. To simulate this process at the pore-scale, we propose that the alteration in surface wettability mediated by thin water films which are below the resolution of simulation grid blocks has to be considered, as observed in experiments. This is modeled by a wettability alteration model based on rate-limited adsorption of ions onto the rock surface.

View Article and Find Full Text PDF

Subsurface fluid flow is ubiquitous in nature, and understanding the interaction of multiple fluids as they flow within a porous medium is central to many geological, environmental, and industrial processes. It is assumed that the flow pathways of each phase are invariant when modeling subsurface flow using Darcy's law extended to multiphase flow, a condition that is assumed to be valid during steady-state flow. However, it has been observed that intermittent flow pathways exist at steady state even at the low capillary numbers typically encountered in the subsurface.

View Article and Find Full Text PDF

The use of Darcy's law to describe steady-state multiphase flow in porous media has been justified by the assumption that the fluids flow in continuously connected pathways. However, a range of complex interface dynamics have been observed during macroscopically steady-state flow, including intermittent pathway flow where flow pathways periodically disconnect and reconnect. The physical mechanisms controlling this behavior have remained unclear, leading to uncertainty concerning the occurrence of the different flow regimes.

View Article and Find Full Text PDF

High-resolution x-ray imaging was used in combination with differential pressure measurements to measure relative permeability and capillary pressure simultaneously during a steady-state waterflood experiment on a sample of Bentheimer sandstone 51.6 mm long and 6.1 mm in diameter.

View Article and Find Full Text PDF

Recent advances in high-resolution three-dimensional X-ray CT imaging have made it possible to visualize fluid configurations during multiphase displacement at the pore-scale. However, there is an inherited difficulty in image-based curvature measurements: the use of voxelized image data may introduce significant error, which has not-to date-been quantified. To find the best method to compute curvature from micro-CT images and quantify the likely error, we performed drainage and imbibition direct numerical simulations for an oil/water system on a bead pack and a Bentheimer sandstone.

View Article and Find Full Text PDF