Publications by authors named "Martin I Garcia-Castro"

Mowat-Wilson syndrome is caused by mutations in ZEB2, with patients exhibiting characteristics indicative of neural crest (NC) defects. We examined the contribution of ZEB2 to human NC formation using a model based on human embryonic stem cells. We found ZEB2 to be one of the earliest factors expressed in prospective human NC, and knockdown revealed a role for ZEB2 in establishing the NC state while repressing pre-placodal and non-neural ectoderm genes.

View Article and Find Full Text PDF

Neural crest cells are an embryonic multipotent stem cell population. Recent studies in model organisms have suggested that neural crest cells are specified earlier than previously thought, at blastula stages. However, the molecular dynamics of early neural crest specification, and functional changes from pluripotent precursors to early specified NC, remain to be elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses advancements in CRISPR/Cas9 genome editing methods for human pluripotent stem cells, focusing on a new transfection protocol using Cas9 mRNA and crRNA:tracrRNA duplexes.
  • The improved protocol achieves high targeting efficiency of up to 85% and biallelic targeting efficiency of 76.5% across various human PS cell lines.
  • The findings highlight the potential for broader applications in CRISPR screening and in the development of tailored cell products for medical therapies.
View Article and Find Full Text PDF
Article Synopsis
  • - Multipass membrane proteins are crucial for various cellular functions, and their insertion into membranes relies on the endoplasmic reticulum protein complex (EMC), particularly EMC1, which has been linked to birth defects in humans.
  • - Research using Xenopus (a frog model) revealed that removing emc1 led to defects in neural crest cells (NCCs) and identified its vital role in WNT signaling, with reduced levels of key proteins in embryos lacking emc1.
  • - The study demonstrated that EMC1 is essential for human NCC development and assessed patient variants, finding many resulted in loss-of-function, highlighting how EMC1 malfunction can lead to specific disease traits through improper protein placement in membranes.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how neural crest cells, which are versatile stem cells, are initially specified during early embryonic development.
  • Researchers conducted experiments using chick embryos at the blastula stage and discovered an intermediate region of the epiblast that is programmed to become neural crest cells.
  • Their findings indicate that the specification of these cells does not rely on cell contact or Wnt signaling, but is instead regulated by the activity of β-catenin, supporting a model for neural crest formation in a specific area of the developing embryo.
View Article and Find Full Text PDF

WNT/β-catenin signaling is crucial for neural crest (NC) formation, yet the effects of the magnitude of the WNT signal remain ill-defined. Using a robust model of human NC formation based on human pluripotent stem cells (hPSCs), we expose that the WNT signal modulates the axial identity of NCs in a dose-dependent manner, with low WNT leading to anterior OTX HOX NC and high WNT leading to posterior OTX HOX NC. Differentiation tests of posterior NC confirm expected derivatives, including posterior-specific adrenal derivatives, and display partial capacity to generate anterior ectomesenchymal derivatives.

View Article and Find Full Text PDF

The neural crest is a transient embryonic tissue that gives rise to a multitude of derivatives in an axially restricted manner. An in vitro counterpart to neural crest can be derived from human pluripotent stem cells (hPSCs) and can be used to study neural crest ontogeny and neurocristopathies, and to generate cells for therapeutic purposes. In order to successfully do this, it is critical to define the specific conditions required to generate neural crest of different axial identities, as regional restriction in differentiation potential is partly cell intrinsic.

View Article and Find Full Text PDF

The developmental biology of neural crest cells in humans remains unexplored due to technical and ethical challenges. The use of pluripotent stem cells to model human neural crest development has gained momentum. We recently introduced a rapid chemically defined approach to induce robust neural crest by WNT/β-CATENIN activation.

View Article and Find Full Text PDF

The neural crest is a fascinating embryonic population unique to vertebrates that is endowed with remarkable differentiation capacity. Thought to originate from ectodermal tissue, neural crest cells generate neurons and glia of the peripheral nervous system, and melanocytes throughout the body. However, the neural crest also generates many ectomesenchymal derivatives in the cranial region, including cell types considered to be of mesodermal origin such as cartilage, bone, and adipose tissue.

View Article and Find Full Text PDF

The functional interrogation of factors underlying early mammalian development is necessary for the understanding and amelioration of human health conditions. The associated article [1] reports on the molecular characterization of markers of neural crest cells in gastrula and neurula stage rabbit embryos. This article presents survival data of rabbit embryos cultured in vitro, as well as immunofluorescence data for molecular markers of neural crest cells following approximately 24-h of culture.

View Article and Find Full Text PDF

The phenomenal migratory and differentiation capacity of neural crest cells has been well established across model organisms. While the earliest stages of neural crest development have been investigated in non-mammalian model systems such as Xenopus and Aves, the early specification of this cell population has not been evaluated in mammalian embryos, of which the murine model is the most prevalent. Towards a more comprehensive understanding of mammalian neural crest formation and human comparative studies, we have used the rabbit as a mammalian system for the study of early neural crest specification and development.

View Article and Find Full Text PDF

Defects in neural crest development have been implicated in many human disorders, but information about human neural crest formation mostly depends on extrapolation from model organisms. Human pluripotent stem cells (hPSCs) can be differentiated into in vitro counterparts of the neural crest, and some of the signals known to induce neural crest formation in vivo are required during this process. However, the protocols in current use tend to produce variable results, and there is no consensus as to the precise signals required for optimal neural crest differentiation.

View Article and Find Full Text PDF

Neural crest (NC) cells arise early in vertebrate development, migrate extensively and contribute to a diverse array of ectodermal and mesenchymal derivatives. Previous models of NC formation suggested derivation from neuralized ectoderm, via meso-ectodermal, or neural-non-neural ectoderm interactions. Recent studies using bird and amphibian embryos suggest an earlier origin of NC, independent of neural and mesodermal tissues.

View Article and Find Full Text PDF

The neural crest (NC) is a migratory population of cells unique to vertebrates that generates many diverse derivatives. NC cells arise during gastrulation at the neural plate border (NPB), which is later elevated as the neural folds (NFs) form and fuse in the dorsal region of the closed neural tube, from where NC cells emigrate. In chick embryos, Pax7 is an early marker, and necessary component of NC development.

View Article and Find Full Text PDF

Regulatory transcription factors of the Pax family play fundamental roles in the function of multipotent cells during vertebrate development, post-natal regeneration, and cancer. Pax7 and its homologue Pax3 are important players in neural crest and muscle development. Both genes are coexpressed in various tissues and are thought to provide similar, but not identical, functions.

View Article and Find Full Text PDF

The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border.

View Article and Find Full Text PDF

Background: Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos.

View Article and Find Full Text PDF

The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation.

View Article and Find Full Text PDF

Neural crest induction involves the combinatorial inputs of the FGF, BMP and Wnt signaling pathways. Recently, a two-step model has emerged where BMP attenuation and Wnt activation induces the neural crest during gastrulation, whereas activation of both pathways maintains the population during neurulation. FGF is proposed to act indirectly during the inductive phase by activating Wnt ligand expression in the mesoderm.

View Article and Find Full Text PDF

Prolonged neurogenesis driven by stem/progenitor cells is a hallmark of the olfactory epithelium (OE), beginning at the placodal stages in the embryo and continuing throughout adult life. Despite the progress made to identify and study the regulation of adult OE progenitors, our knowledge of embryonic OE precursors and their cellular contributions to the adult OE has been stalled by the lack of markers able to distinguish individual candidate progenitors. Here we identify embryonic OE Pax7+ progenitors, detected at embryonic day 10.

View Article and Find Full Text PDF

The outstanding migration and differentiation capacities of neural crest cells (NCCs) have fascinated scientists since Wilhelm His described this cell population in 1868. Today, after intense research using vertebrate model organisms, we have gained considerable knowledge regarding the origin, migration and differentiation of NCCs. However, our understanding of NCC development in human embryos remains largely uncharacterized, despite the role the neural crest plays in several human pathologies.

View Article and Find Full Text PDF

The neural crest is a stem population critical for development of the vertebrate craniofacial skeleton and peripheral ganglia. Neural crest cells originate along the border between the neural plate and epidermis, migrate extensively and generate numerous derivatives, including neurons and glia of the peripheral nervous system, melanocytes, bone and cartilage of the head skeleton. Impaired neural crest development is associated with human defects, including cleft palate.

View Article and Find Full Text PDF

The neural crest is an embryonic cell population that originates at the border between the neural plate and the prospective epidermis. Around the time of neural tube closure, neural crest cells emigrate from the neural tube, migrate along defined paths in the embryo and differentiate into a wealth of derivatives. Most of the craniofacial skeleton, the peripheral nervous system, and the pigment cells of the body originate from neural crest cells.

View Article and Find Full Text PDF

Neural crest cells, which generate peripheral nervous system and facial skeleton, arise at the neural plate/ectodermal border via an inductive interaction between these tissues. Wnts and bone morphogenetic proteins (BMPs) play roles in neural crest induction in amphibians and zebrafish. Here, we show that, in avians, Wnt6 is localized in ectoderm and in vivo inhibition of Wnt signaling perturbs neural crest formation.

View Article and Find Full Text PDF