This paper provides a detailed analysis of three common NMR probe circuits (untuned, tuned, and impedance-matched) and studies their effects on multi-pulse experiments, such as those based on the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The magnitude of probe dynamics effects on broadband refocusing pulses are studied as a function of normalized RF bandwidth. Finally, the probe circuit models are integrated with spin dynamics simulations to design hardware-specific RF excitation and refocusing pulses for optimizing user-specified metrics such as signal-to-noise ratio (SNR) in grossly inhomogeneous fields.
View Article and Find Full Text PDFSaturation-recovery measurements with Carr-Purcell-Meiboom-Gill sequences are commonly employed to measure the longitudinal relaxation time constant, T, in grossly inhomogeneous fields. We show that in general the off-resonant effect generates unexpected extra signals in the T measurement. In the present study, we derive a modified T kernel that accounts for this off-resonance effect quantitatively.
View Article and Find Full Text PDFThe performance of 2D NMR diffusion-relaxation measurements for fluid typing applications is analyzed. In particular, we delineate the region in the diffusion - relaxation plane that can be determined with a given gradient strength and homogeneity, and compare the performance of the single and double echo encoding with the stimulated echo diffusion encoding. We show that the diffusion editing based approach is able to determine the diffusion coefficient only if the relaxation time T2 exceeds a cutoff value T2,cutoff, that scales like T2,cutoff∝g(-2/3)D(-1/3).
View Article and Find Full Text PDFWe describe and analyze the effects of transients within radio-frequency (RF) pulses on multiple-pulse NMR measurements such as the well-known Carr-Purcell-Meiboom-Gill (CPMG) sequence. These transients are functions of the absolute RF phases at the beginning and end of the pulse, and are thus affected by the timing of the pulse sequence with respect to the period of the RF waveform. Changes in transients between refocusing pulses in CPMG-type sequences can result in signal decay, persistent oscillations, changes in echo shape, and other effects.
View Article and Find Full Text PDFThe performance of the standard CPMG sequence in inhomogeneous fields can be improved with the use of broadband excitation and refocusing pulses. In previous work we have developed short composite broadband refocusing pulses together with practical excitation pulses to realize such performance gains, and quantified them using the ratio of signal to noise power (SNR). In this work we systematically explore the performance of refocusing pulses as a function of the overall pulse length up to ten times the length of the regular 180° pulse.
View Article and Find Full Text PDFCrude oils, which are complex mixtures of hydrocarbons, can be characterized by nuclear magnetic resonance diffusion and relaxation methods to yield physical properties and chemical compositions. In particular, the field dependence, or dispersion, of T1 relaxation can be used to investigate the presence and dynamics of asphaltenes, the large molecules primarily responsible for the high viscosity in heavy crudes. However, the T2 relaxation dispersion of crude oils, which provides additional insight when measured alongside T1, has yet to be investigated systematically.
View Article and Find Full Text PDFSuperparamagnetic iron oxide (SPIO) nanoparticles have the potential to be used in the characterization of porous rock formations in oil fields as a contrast agent for NMR logging because they are small enough to traverse through nanopores and enhance contrast by shortening NMR T2 relaxation time. However, successful development and application require detailed knowledge of particle stability and mobility in reservoir rocks. Because nanoparticle adsorption to sand (SiO2) and rock (often CaCO3) affects their mobility, we investigated the thermodynamic equilibrium adsorption behavior of citric acid-coated SPIO nanoparticles (CA SPIO NPs) and poly(ethylene glycol)-grafted SPIO nanoparticles (PEG SPIO NPs) on SiO2 (silica) and CaCO3 (calcium carbonate).
View Article and Find Full Text PDFThe performance of the standard CPMG sequence in inhomogeneous fields can be improved with the use of broadband excitation and refocusing pulses. Here we introduce a new class of excitation pulses, so-called axis-matching excitation pulses, that optimize the response for a given refocusing pulse. These new excitation pulses are tailored to the refocusing pulses and take their imperfections into account.
View Article and Find Full Text PDFWe demonstrate that CPMG sequences with phase-modulated refocusing pulses of the same duration as the standard 180° pulses can generate echo trains with significantly increased amplitudes compared to the standard CPMG sequence in the case when there is a large range of Larmor frequencies across the sample. The best performance is achieved with symmetric phase-alternating (SPA) composite refocusing pulses of the form α-yβ+yα-y. In comparison to standard 180° pulses, we show that with SPA refocusing pulses with α≈27° and β≈126°, it is possible to double the signal-to-noise ratio without increasing the total pulse duration or power consumption of the refocusing pulses.
View Article and Find Full Text PDFThe detection of superparamagnetic nanoparticles using NMR logging has the potential to provide enhanced contrast in oil reservoir rock formations. The stability of the nanoparticles is critical because the NMR relaxivity (R(2) ≡ 1/T(2)) is dependent on the particle size. Here we use a molecular theory to predict and validate experimentally the stability of citric acid-coated/PEGylated iron oxide nanoparticles under different pH conditions (pH 5, 7, 9, 11).
View Article and Find Full Text PDFNuclear magnetic resonance typically utilizes a tuned resonance circuit with impedance matching to transmit power and receive signal. The efficiency of such a tuned coil is often described in terms of the coil quality factor, Q. However, in field experiments such as in well-logging, the circuit Q can vary dramatically throughout the depth of the wellbore due to temperature or fluid salinity variations.
View Article and Find Full Text PDFWe apply optimal control theory (OCT) to the design of refocusing pulses suitable for the CPMG sequence that are robust over a wide range of B(0) and B(1) offsets. We also introduce a model, based on recent progress in the analysis of unitary dynamics in the field of quantum information processing (QIP), that describes the multiple refocusing dynamics of the CPMG sequence as a dephasing Pauli channel. This model provides a compact characterization of the consequences and severity of residual pulse errors.
View Article and Find Full Text PDFWe show that low-field proton nuclear magnetic resonance (NMR) relaxation and diffusion experiments can be used to study asphaltene aggregation directly in crude oils. Relaxation was found to be multiexponential, reflecting the composition of a complex fluid. Remarkably, the relaxation data for samples with different asphaltene concentrations can be collapsed onto each other by a simple rescaling of the time dimension with a concentration-dependent factor xi, whereas the observed diffusion behavior is unaffected by asphaltene concentration.
View Article and Find Full Text PDFMeasurements of relaxation time and diffusion coefficient by nuclear magnetic resonance are well-established techniques to study molecular motions in fluids. Diffusion measurements sense the translational diffusion coefficients of the molecules, whereas relaxation times measured at low magnetic fields probe predominantly the rotational diffusion of the molecules. Many complex fluids are composed of a mixture of molecules with a wide distribution of sizes and chemical properties.
View Article and Find Full Text PDFWe present a new approach of NMR measurements in the presence of grossly inhomogeneous fields where information is encoded in the echo shape of CPMG trains. The method is based on sequences that consist of an initial encoding sequence that generates echoes with contributions from at least two different coherence pathways that are then both refocused many times by a long string of closely spaced identical pulses. The generated echoes quickly assume an asymptotic shape that encodes the information of interest.
View Article and Find Full Text PDFLow field relaxation and diffusion measurements have become essential tools to study the pore space of sedimentary rocks with important practical applications in the field of well logging and hydrocarbon extractions. Even at Larmor frequencies below 2 MHz, diffusion measurements are often affected noticeably by internal field inhomogeneities. These field inhomogeneities are induced by susceptibility contrast between the rock and the fluid and are evident in most sandstones.
View Article and Find Full Text PDFWe present new NMR techniques to characterize food products that are based on the measurement of two-dimensional diffusion-T2 relaxation and T1-T2 relaxation distribution functions. These measurements can be performed in magnets of modest strength and low homogeneity and do not require pulsed gradients. As an illustration, we present measurements on a range of dairy products that include milks, yogurt, cream, and cheeses.
View Article and Find Full Text PDFMagn Reson Imaging
February 2005
We review diffusion-weighted relaxation protocols for two-dimensional diffusion/relaxation time (D, T(2)) distributions and their application to fluid-saturated sedimentary rocks at low fields typical of oil-well logging tools (< or = 2 MHz for 1H). Fixed field gradient (FFG) protocols may be implemented in logging tools and in the laboratory; there, pulsed field gradient (PFG) protocols are also available. In either category, direct or stimulated echoes may be used for the diffusion evolution periods.
View Article and Find Full Text PDFWe experimentally verify a new method of extracting the surface-to-volume ratio (S/V) of porous media with diffusion NMR. In contrast to the widely used pulsed field gradient (PFG) technique, which employs the stimulated echo coherence pathway, we use here the direct Carr-Purcell-Meiboom-Gill (CPMG) path. Even for high echoes, which exhibit ample attenuation due to diffusion in the field gradient, the relevant ruler length for the direct pathway is fixed by the diffusion length during a single inter-pulse spacing.
View Article and Find Full Text PDFWe experimentally explore some of the implications of a recent theoretical study [J. Magn. Reson.
View Article and Find Full Text PDFNonresonant manipulation of nuclear spins can probe large volumes of sample situated in inhomogeneous fields outside a magnet, a geometry suitable for mobile sensors for the inspection of roads, buildings, and geological formations. However, the interference by Earth's magnetic field causes rapid decay of the signal within a few milliseconds for protons and is detrimental to this method. Here we describe a technique to suppress the effects of Earth's field by using adiabatic rotations and sudden switching of the applied fields.
View Article and Find Full Text PDF