Publications by authors named "Martin How"

Article Synopsis
  • Motion vision is crucial for various animal behaviors, including how fiddler crabs sense predators.
  • Fiddler crabs were tested for their ability to detect second-order motion using both intensity and polarization, revealing they could respond to both types of stimuli.
  • This is the first evidence that any animal can detect second-order motion in polarization, enhancing our understanding of how polarization vision aids in target detection.
View Article and Find Full Text PDF

Many animals avoid detection or recognition using camouflage tailored to the visual features of their environment. The appearance of those features, however, can be affected by fluctuations in local lighting conditions, making them appear different over time. Despite dynamic lighting being common in many terrestrial and aquatic environments, it is unknown whether dynamic lighting influences the camouflage patterns that animals adopt.

View Article and Find Full Text PDF

The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species.

View Article and Find Full Text PDF
Polarization vision in terrestrial hermit crabs.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

November 2023

Polarization vision is used by a wide range of animals for navigating, orienting, and detecting objects or areas of interest. Shallow marine and semi-terrestrial crustaceans are particularly well known for their abilities to detect predator-like or conspecific-like objects based on their polarization properties. On land, some terrestrial invertebrates use polarization vision for detecting suitable habitats, oviposition sites or conspecifics, but examples of threat detection in the polarization domain are less well known.

View Article and Find Full Text PDF

Changes in environmental conditions can shift the costs and benefits of aggregation or interfere with the sensory perception of near neighbors. This affects group cohesion with potential impacts on the benefits of collective behavior such as reduced predation risk. Organisms are rarely exposed to one stressor in isolation, yet there are only a few studies exploring the interactions between multiple stressors and their effects on social behavior.

View Article and Find Full Text PDF

Stripes deter horseflies (tabanids) from landing on zebras and, while several mechanisms have been proposed, these hypotheses have yet to be tested satisfactorily. Here, we investigated three possible visual mechanisms that could impede successful tabanid landings (aliasing, contrast and polarization) but additionally explored pattern element size employing video footage of horseflies around differently patterned coats placed on domestic horses. We found that horseflies are averse to landing on highly but not on lightly contrasting stripes printed on horse coats.

View Article and Find Full Text PDF

In shallow water, downwelling light is refracted from surface waves onto the substrate creating bands of light that fluctuate in both time and space, known as caustics. This dynamic illumination can be a visual hindrance for animals in shallow underwater environments. Animals in such habitats may have evolved to use polarization vision for discriminating objects while ignoring the variations in illumination caused by caustics.

View Article and Find Full Text PDF

Cuttlefish are masters of camouflage and show a remarkable ability to hide in plain sight. A new study reveals how these animals translate visual information about their surroundings into effective camouflage patterns.

View Article and Find Full Text PDF

Many animals with compound eyes undergo major optical changes to adjust visual sensitivity from day to night, often under control of a circadian clock. In fiddler crabs, this presents most conspicuously in the huge volume increase of photopigment-packed rhabdoms and the widening of crystalline cone apertures at night. These changes are hypothesised to adjust the light flux to the photoreceptors and to alter optical sensitivity as the eye moves between light- and dark-adapted states.

View Article and Find Full Text PDF

Shark bites on humans are rare but are sufficiently frequent to generate substantial public concern, which typically leads to measures to reduce their frequency. Unfortunately, we understand little about why sharks bite humans. One theory for bites occurring at the surface, e.

View Article and Find Full Text PDF

Many animals go to great lengths to stabilize their eyes relative to the visual scene and do so to enhance the localization of moving objects and to functionally partition the visual system relative to the outside world. An important cue that is used to control these stabilization movements is contrast within the visual surround. Previous studies on insects, spiders and fish have shown that gaze stabilization is achromatic ('colour blind'), meaning that chromatic contrast alone (in the absence of apparent intensity contrasts) does not contribute to gaze stabilization.

View Article and Find Full Text PDF

Bird song and human speech are learned early in life and for both cases engagement with live social tutors generally leads to better learning outcomes than passive audio-only exposure. Real-world tutor-tutee relations are normally not uni- but multimodal and observations suggest that visual cues related to sound production might enhance vocal learning. We tested this hypothesis by pairing appropriate, colour-realistic, high frame-rate videos of a singing adult male zebra finch tutor with song playbacks and presenting these stimuli to juvenile zebra finches (Taeniopygia guttata).

View Article and Find Full Text PDF

Many animals go to great lengths to stabilize their eyes relative to the visual scene and do so to enhance the localization of moving objects and to functionally partition the visual system relative to the outside world. An important cue that is used to control these stabilization movements is contrast within the visual surround. Previous studies on insects, spiders and fish have shown that gaze stabilization is achromatic ('colour blind'), meaning that chromatic contrast alone (in the absence of apparent intensity contrasts) does not contribute to gaze stabilization.

View Article and Find Full Text PDF

Polarization vision is widespread in nature, mainly among invertebrates, and is used for a range of tasks including navigation, habitat localization and communication. In marine environments, some species such as those from the Crustacea and Cephalopoda that are principally monochromatic, have evolved to use this adaptation to discriminate objects across the whole visual field, an ability similar to our own use of colour vision. The performance of these polarization vision systems varies, and the few cephalopod species tested so far have notably acute thresholds of discrimination.

View Article and Find Full Text PDF

Of all hypotheses advanced for why zebras have stripes, avoidance of biting fly attack receives by far the most support, yet the mechanisms by which stripes thwart landings are not yet understood. A logical and popular hypothesis is that stripes interfere with optic flow patterns needed by flying insects to execute controlled landings. This could occur through disrupting the radial symmetry of optic flow via the aperture effect (i.

View Article and Find Full Text PDF

A great diversity of adaptations is found among animals with compound eyes and even closely related taxa can show variation in their light-adaptation strategies. A prime example of a visual system evolved to function in specific light environments is the fiddler crab, used widely as a model to research aspects of crustacean vision and neural pathways. However, questions remain regarding how their eyes respond to the changes in brightness spanning many orders of magnitude, associated with their habitat and ecology.

View Article and Find Full Text PDF

Many crustaceans are sensitive to the polarization of light and use this information for object-based visually guided behaviors. For these tasks, it is unknown whether polarization and intensity information are integrated into a single-contrast channel, whereby polarization directly contributes to perceived intensity, or whether they are processed separately and in parallel. Using a novel type of visual display that allowed polarization and intensity properties of visual stimuli to be adjusted independently and simultaneously, we conducted behavioral experiments with fiddler crabs to test which of these two models of visual processing occurs.

View Article and Find Full Text PDF

Gaze stabilization is a fundamental aspect of vision and almost all animals shift their eyes to compensate for any self-movement relative to the external environment. When it comes to mantis shrimp, however, the situation becomes complicated due to the complexity of their visual system and their range of eye movements. The stalked eyes of mantis shrimp can independently move left and right, and up and down, whilst simultaneously rotating about the axis of the eye stalks.

View Article and Find Full Text PDF

Averting attack by biting flies is increasingly regarded as the evolutionary driver of zebra stripes, although the precise mechanism by which stripes ameliorate attack by ectoparasites is unknown. We examined the behaviour of tabanids (horse flies) in the vicinity of captive plains zebras and uniformly coloured domestic horses living on a horse farm in Britain. Observations showed that fewer tabanids landed on zebras than on horses per unit time, although rates of tabanid circling around or briefly touching zebra and horse pelage did not differ.

View Article and Find Full Text PDF

Most polarisation vision studies reveal elegant examples of how animals, mainly the invertebrates, use polarised light cues for navigation, course-control or habitat selection. Within the past two decades it has been recognised that polarised light, reflected, blocked or transmitted by some animal and plant tissues, may also provide signals that are received or sent between or within species. Much as animals use colour and colour signalling in behaviour and survival, other species additionally make use of polarisation signalling, or indeed may rely on polarisation-based signals instead.

View Article and Find Full Text PDF

Mimicry of warning signals is common, and can be mutualistic when mimetic species harbour equal levels of defence (Müllerian), or parasitic when mimics are undefended but still gain protection from their resemblance to the model (Batesian). However, whether chemically defended mimics should be similar in terms of toxicity (i.e.

View Article and Find Full Text PDF

In "Polarisation vision: overcoming challenges of working with a property of light we barely see" (Foster et al. 2018) we provide a basic description of how Stokes parameters can be estimated and used to calculate the angle of polarisation (AoP).

View Article and Find Full Text PDF

Almost all animals, regardless of the anatomy of the eyes, require some level of gaze stabilization in order to see the world clearly and without blur. For the mantis shrimp, achieving gaze stabilization is unusually challenging as their eyes have an unprecedented scope for movement in all three rotational degrees of freedom: yaw, pitch and torsion. We demonstrate that the species performs stereotypical gaze stabilization in the yaw degree of rotational freedom, which is accompanied by simultaneous changes in the pitch and torsion rotation of the eye.

View Article and Find Full Text PDF

In recent years, the study of polarisation vision in animals has seen numerous breakthroughs, not just in terms of what is known about the function of this sensory ability, but also in the experimental methods by which polarisation can be controlled, presented and measured. Once thought to be limited to only a few animal species, polarisation sensitivity is now known to be widespread across many taxonomic groups, and advances in experimental techniques are, in part, responsible for these discoveries. Nevertheless, its study remains challenging, perhaps because of our own poor sensitivity to the polarisation of light, but equally as a result of the slow spread of new practices and methodological innovations within the field.

View Article and Find Full Text PDF