Publications by authors named "Martin Homann"

Article Synopsis
  • This study examines 3.48 billion-year-old pyritic stromatolites from the Dresser Formation, revealing distinct structures influenced by hydrothermal activity and microbial processes.
  • The findings indicate a complex interplay between microbial life and sediment deposition, with evidence of organomineralization that suggests the presence of ancient microbial communities.
  • The research implies diverse growth environments for these stromatolites, from shallow waters to brine pools, influenced by both phototrophic and chemotrophic organisms, as indicated by stable isotope data and metal accumulations.
View Article and Find Full Text PDF

In silica-rich hot spring environments, internally laminated, digitate sinter deposits are often interpreted as bio-mediated structures. The organic components of microbial communities (cell surfaces, sheaths and extracellular polymeric substances) can act as templates for silica precipitation, therefore influencing digitate sinter morphogenesis. In addition to biologic surface-templating effects, various microenvironmental factors (hydrodynamics, local pH and fluctuating wind patterns) can also influence silica precipitation, and therefore the morphology of resulting digitate sinters.

View Article and Find Full Text PDF

Stable isotope signatures of elements related to life such as carbon and nitrogen can be powerful biomarkers that provide key information on the biological origin of organic remains and their paleoenvironments. Marked advances have been achieved in the last decade in our understanding of the coupled evolution of biological carbon and nitrogen cycling and the chemical evolution of the early Earth thanks, in part, to isotopic signatures preserved in fossilized microbial mats and organic matter of marine origin. However, the geologic record of the early continental biosphere, as well as its evolution and biosignatures, is still poorly constrained.

View Article and Find Full Text PDF

Palisade fabric is a ubiquitous texture of silica sinter found in low temperature (<40°C) regimes of hot spring environments, and it is formed when populations of filamentous microorganisms act as templates for silica polymerization. Although it is known that postdepositional processes such as biological degradation and dewatering can strongly affect preservation of these fabrics, the impact of extreme aridity has so far not been studied in detail. Here, we report a detailed analysis of recently silicified palisade fabrics from a geyser in El Tatio, Chile, tracing the progressive degradation of microorganisms within the silica matrix.

View Article and Find Full Text PDF