Publications by authors named "Martin Hebart"

Article Synopsis
  • Humans can categorize visual information into specific groups, with previous fMRI studies highlighting how the brain distinguishes between broad categories (like animate vs. inanimate) and individual objects.
  • Recent research used fMRI coupled with multiple examples of 48 different mammals to examine this further, aiming to clarify the distinctions between fine-grained and coarse-scale representations.
  • The findings suggest fMRI primarily captures visual-specific and general category information, but it can also identify subtle differences between individual objects, challenging earlier assumptions about the level of detail provided by fMRI data.
View Article and Find Full Text PDF

Object vision is commonly thought to involve a hierarchy of brain regions processing increasingly complex image features, with high-level visual cortex supporting object recognition and categorization. However, object vision supports diverse behavioural goals, suggesting basic limitations of this category-centric framework. To address these limitations, we mapped a series of dimensions derived from a large-scale analysis of human similarity judgements directly onto the brain.

View Article and Find Full Text PDF

The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information. However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al.

View Article and Find Full Text PDF

Our visual world consists of an immense number of unique objects and yet, we are easily able to identify, distinguish, interact, and reason about the things we see within a few hundred milliseconds. This requires that we integrate and focus on a wide array of object properties to support specific behavioral goals. In the current study, we examined how these rich object representations unfold in the human brain by modelling time-resolved MEG signals evoked by viewing single presentations of tens of thousands of object images.

View Article and Find Full Text PDF

What makes certain images more memorable than others? While much of memory research has focused on participant effects, recent studies using a stimulus-centric perspective have sparked debate on the determinants of memory, including the roles of semantic and visual features and whether the most prototypical or atypical items are best remembered. Prior studies have typically relied on constrained stimulus sets, limiting a generalized view of the features underlying what we remember. Here, we collected more than 1 million memory ratings for a naturalistic dataset of 26,107 object images designed to comprehensively sample concrete objects.

View Article and Find Full Text PDF

To study visual and semantic object representations, the need for well-curated object concepts and images has grown significantly over the past years. To address this, we have previously developed THINGS, a large-scale database of 1854 systematically sampled object concepts with 26,107 high-quality naturalistic images of these concepts. With THINGSplus, we significantly extend THINGS by adding concept- and image-specific norms and metadata for all 1854 concepts and one copyright-free image example per concept.

View Article and Find Full Text PDF

Understanding actions performed by others requires us to integrate different types of information about people, scenes, objects, and their interactions. What organizing dimensions does the mind use to make sense of this complex action space? To address this question, we collected intuitive similarity judgments across two large-scale sets of naturalistic videos depicting everyday actions. We used cross-validated sparse non-negative matrix factorization to identify the structure underlying action similarity judgments.

View Article and Find Full Text PDF

Understanding object representations requires a broad, comprehensive sampling of the objects in our visual world with dense measurements of brain activity and behavior. Here, we present THINGS-data, a multimodal collection of large-scale neuroimaging and behavioral datasets in humans, comprising densely sampled functional MRI and magnetoencephalographic recordings, as well as 4.70 million similarity judgments in response to thousands of photographic images for up to 1,854 object concepts.

View Article and Find Full Text PDF

Near-scale environments, like work desks, restaurant place settings or lab benches, are the interface of our hand-based interactions with the world. How are our conceptual representations of these environments organized? What properties distinguish among reachspaces, and why? We obtained 1.25 million similarity judgments on 990 reachspace images, and generated a 30-dimensional embedding which accurately predicts these judgments.

View Article and Find Full Text PDF

Drawings offer a simple and efficient way to communicate meaning. While line drawings capture only coarsely how objects look in reality, we still perceive them as resembling real-world objects. Previous work has shown that this perceived similarity is mirrored by shared neural representations for drawings and natural images, which suggests that similar mechanisms underlie the recognition of both.

View Article and Find Full Text PDF

Representational Similarity Analysis (RSA) has emerged as a popular method for relating representational spaces from human brain activity, behavioral data, and computational models. RSA is based on the comparison of representational (dis-)similarity matrices (RDMs or RSMs), which characterize the pairwise (dis-)similarities of all conditions across all features (e.g.

View Article and Find Full Text PDF

Line drawings convey meaning with just a few strokes. Despite strong simplifications, humans can recognize objects depicted in such abstracted images without effort. To what degree do deep convolutional neural networks (CNNs) mirror this human ability to generalize to abstracted object images? While CNNs trained on natural images have been shown to exhibit poor classification performance on drawings, other work has demonstrated highly similar latent representations in the networks for abstracted and natural images.

View Article and Find Full Text PDF

The neural basis of object recognition and semantic knowledge has been extensively studied but the high dimensionality of object space makes it challenging to develop overarching theories on how the brain organises object knowledge. To help understand how the brain allows us to recognise, categorise, and represent objects and object categories, there is a growing interest in using large-scale image databases for neuroimaging experiments. In the current paper, we present THINGS-EEG, a dataset containing human electroencephalography responses from 50 subjects to 1,854 object concepts and 22,248 images in the THINGS stimulus set, a manually curated and high-quality image database that was specifically designed for studying human vision.

View Article and Find Full Text PDF

Over the past decade, deep neural network (DNN) models have received a lot of attention due to their near-human object classification performance and their excellent prediction of signals recorded from biological visual systems. To better understand the function of these networks and relate them to hypotheses about brain activity and behavior, researchers need to extract the activations to images across different DNN layers. The abundance of different DNN variants, however, can often be unwieldy, and the task of extracting DNN activations from different layers may be non-trivial and error-prone for someone without a strong computational background.

View Article and Find Full Text PDF

Topographic maps are a fundamental feature of cortex architecture in the mammalian brain. One common theory is that the de-differentiation of topographic maps links to impairments in everyday behavior due to less precise functional map readouts. Here, we tested this theory by characterizing de-differentiated topographic maps in primary somatosensory cortex (SI) of younger and older adults by means of ultra-high resolution functional magnetic resonance imaging together with perceptual finger individuation and hand motor performance.

View Article and Find Full Text PDF

Objects can be characterized according to a vast number of possible criteria (such as animacy, shape, colour and function), but some dimensions are more useful than others for making sense of the objects around us. To identify these core dimensions of object representations, we developed a data-driven computational model of similarity judgements for real-world images of 1,854 objects. The model captured most explainable variance in similarity judgements and produced 49 highly reproducible and meaningful object dimensions that reflect various conceptual and perceptual properties of those objects.

View Article and Find Full Text PDF

Performance improvements during early human motor skill learning are suggested to be driven by short periods of rest during practice, at the scale of seconds. To reveal the unknown mechanisms behind these "micro-offline" gains, we leveraged the sampling power offered by online crowdsourcing (cumulative over all experiments = 951). First, we replicated the original in-lab findings, demonstrating generalizability to subjects learning the task in their daily living environment ( = 389).

View Article and Find Full Text PDF

In recent years, the use of a large number of object concepts and naturalistic object images has been growing strongly in cognitive neuroscience research. Classical databases of object concepts are based mostly on a manually curated set of concepts. Further, databases of naturalistic object images typically consist of single images of objects cropped from their background, or a large number of naturalistic images of varying quality, requiring elaborate manual image curation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how an observer's goals influence the categorization of visual objects and their processing in various contexts, highlighting a gap in current understanding.
  • Using advanced neuroimaging techniques (MEG and fMRI), the research identifies distinct yet overlapping processes in the brain related to task and object processing, primarily in the frontoparietal and occipitotemporal areas.
  • Results show that tasks can enhance specific features of objects, with an increasing influence of task-related signals on object representation as visual processing progresses in the brain.
View Article and Find Full Text PDF

Standard neuroimaging data analysis based on traditional principles of experimental design, modelling, and statistical inference is increasingly complemented by novel analysis methods, driven e.g. by machine learning methods.

View Article and Find Full Text PDF

Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis.

View Article and Find Full Text PDF

Unlabelled: Goal-directed and instrumental learning are both important controllers of human behavior. Learning about which stimulus event occurs in the environment and the reward associated with them allows humans to seek out the most valuable stimulus and move through the environment in a goal-directed manner. Stimulus-response associations are characteristic of instrumental learning, whereas response-outcome associations are the hallmark of goal-directed learning.

View Article and Find Full Text PDF

Supervised machine learning methods typically require splitting data into multiple chunks for training, validating, and finally testing classifiers. For finding the best parameters of a classifier, training and validation are usually carried out with cross-validation. This is followed by application of the classifier with optimized parameters to a separate test set for estimating the classifier's generalization performance.

View Article and Find Full Text PDF