A thorough experimental and computational study has been carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu3(btc)2 (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Methane adsorption data measured at several temperatures for Cu3(btc)2, and its isostructural analogue Cr3(btc)2, show that there is little difference in volumetric adsorption capacity when the metal center is changed. In situ neutron powder diffraction data obtained for both materials were used to locate four CD4 adsorption sites that fill sequentially.
View Article and Find Full Text PDFJ Phys Chem Lett
April 2015
The binding energy of the naphthalene(+•)(benzene) heterodimer cation has been determined to be 7.9 ± 1 kcal/mol for C10H8(+•)(C6H6) and 8.1 ± 1 kcal/mol for C10H8(+•)(C6D6) by equilibrium thermochemical measurements using the mass-selected drift cell technique.
View Article and Find Full Text PDFMononuclear metalloenzymes in nature can function in cooperation with precisely positioned redox-active organic cofactors in order to carry out multielectron catalysis. Inspired by the finely tuned redox management of these bioinorganic systems, we present the design, synthesis, and experimental and theoretical characterization of a homologous series of cobalt complexes bearing redox-active pyrazines. These donor moieties are locked into key positions within a pentadentate ligand scaffold in order to evaluate the effects of positioning redox non-innocent ligands on hydrogen evolution catalysis.
View Article and Find Full Text PDFConstruction of the exact exchange matrix, K, is typically the rate-determining step in hybrid density functional theory, and therefore, new approaches with increased efficiency are highly desirable. We present a framework with potential for greatly improved efficiency by computing a compressed exchange matrix that yields the exact exchange energy, gradient, and direct inversion of the iterative subspace (DIIS) error vector. The compressed exchange matrix is constructed with one index in the compact molecular orbital basis and the other index in the full atomic orbital basis.
View Article and Find Full Text PDFYour correspondents develop and apply fully nonorthogonal, local-reference perturbation theories describing non-covalent interactions. Our formulations are based on a Löwdin partitioning of the similarity-transformed Hamiltonian into a zeroth-order intramonomer piece (taking local CCSD solutions as its zeroth-order eigenfunction) plus a first-order piece coupling the fragments. If considerations are limited to a single molecule, the proposed intermolecular similarity-transformed perturbation theory represents a frozen-orbital variant of the "(2)"-type theories shown to be competitive with CCSD(T) and of similar cost if all terms are retained.
View Article and Find Full Text PDFWe introduce a necessary and sufficient condition for an arbitrary wavefunction to be collinear, i.e., its spin is quantized along some axis.
View Article and Find Full Text PDFA highly efficient water-tolerant, solid-base catalyst for the self-condensation of biomass-derived methyl ketones to jet-diesel fuel precursors was developed by grafting site-isolated secondary amines on silica-alumina supports. It is shown that apart from the nature and density of amine groups and the spatial separation of the acidic and basic sites, the acidity of the support material plays a critical role in defining the catalytic activity. It is also found that a combination of weakly acidic silanol/aluminol with secondary amine groups can mimic proline catalysts and are more effective in catalyzing the selective dimerization reaction than the combination of amines with organic acids.
View Article and Find Full Text PDFA meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 10(10) choices carved out of a functional space of almost 10(40) possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points.
View Article and Find Full Text PDFAn efficient new molecular orbital (MO) basis algorithm is reported implementing the pair atomic resolution of the identity approximation (PARI) to evaluate the exact exchange contribution (K) to self-consistent field methods, such as hybrid and range-separated hybrid density functionals. The PARI approximation, in which atomic orbital (AO) basis function pairs are expanded using auxiliary basis functions centered only on their two respective atoms, was recently investigated by Merlot et al. [J.
View Article and Find Full Text PDFThe method of complex basis functions for computing positions and widths of molecular resonances is revisited. An open-ended and efficient implementation is described. The basis set requirements of the complex basis are investigated within the computationally inexpensive static-exchange approximation, and the results of this investigation lead to a hierarchy of basis sets for complex basis function calculations on small molecules.
View Article and Find Full Text PDFRestricted Hartree Fock using complex-valued orbitals (cRHF) is studied. We introduce an orbital pairing theorem, with which we obtain a concise connection between cRHF and real-valued RHF, and use it to uncover the close relationship between cRHF, unrestricted Hartree Fock, and generalized valence bond perfect pairing. This enables an intuition for cRHF, contrasting with the generally unintuitive nature of complex orbitals.
View Article and Find Full Text PDFWe seek insight into the origin of observations made in plasma experiments mimicking interstellar and circumstellar conditions. To this end theory is applied to the low-energy isomers of C4H2(+), C6H2(+) and C6H4(+) and their formation paths from acetylene and its fragments. Ab initio molecular dynamics trajectories are performed to explore which isomers are readily accessible from acetylene and its ion fragments.
View Article and Find Full Text PDFIn order for hydrogen gas to be used as a fuel, it must be stored in sufficient quantity on board the vehicle. Efforts are being made to increase the hydrogen storage capabilities of metal-organic frameworks (MOFs) by introducing unsaturated metal sites into their linking element(s), as hydrogen adsorption centers. In order to devise successful hydrogen storage strategies there is a need for a fundamental understanding of the weak and elusive hydrogen physisorption interaction.
View Article and Find Full Text PDFThe catalytic activity of secondary amines supported on mesoporous silica for the self-condensation of n-butanal to 2-ethylhexenal can be altered significantly by controlling the Brønsted acidity of M--OH species present on the surface of the support. In this study, M--OH (M=Sn, Zr, Ti, and Al) groups were doped onto the surface of SBA-15, a mesoporous silica, prior to grafting secondary propyl amine groups on to the support surface. The catalytic activity was found to depend critically on the synthesis procedure, the nature and amount of metal species introduced and the spatial separation between the acidic sites and amine groups.
View Article and Find Full Text PDFWe highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum Ŝz, M, to the M - 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole.
View Article and Find Full Text PDFThe stability of the five main isomers of C6H3(+) was investigated using quantum chemical calculations. The cyclic isomers are stabilized by two complementary aromatic effects, first 6-electron π aromaticity, and second a more unusual three-center two-electron σ aromaticity. Two cyclic isomers sit at the bottom of the potential energy surface with energies very close to each other, with a third cyclic isomer slightly higher.
View Article and Find Full Text PDFIn this paper, we report the development, implementation, and assessment of a novel method for describing strongly correlated systems, spin-flip non-orthogonal configuration interaction (SF-NOCI). The wavefunction is defined to be a linear combination of independently relaxed Slater determinants obtained from all possible spin-flipping excitations within a localized orbital active-space, typically taken to be the singly occupied orbitals of a high-spin ROHF wavefunction. The constrained orbital optimization of each CI basis configuration is defined such that only non-active-space orbitals are allowed to relax (all active space orbitals are fixed).
View Article and Find Full Text PDFThe well-known frameworks of the type M2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) have numerous potential applications in gas storage and separations, owing to their exceptionally high concentration of coordinatively unsaturated metal surface sites, which can interact strongly with small gas molecules such as H2. Employing a related meta-functionalized linker that is readily obtained from resorcinol, we now report a family of structural isomers of this framework, M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni; m-dobdc(4-) = 4,6-dioxido-1,3-benzenedicarboxylate), featuring exposed M(2+) cation sites with a higher apparent charge density. The regioisomeric linker alters the symmetry of the ligand field at the metal sites, leading to increases of 0.
View Article and Find Full Text PDFAn approximation to the spin-flip extended configuration interaction singles method is developed using a second-order perturbation theory approach. In addition to providing significant efficiency advantages, the new framework is general for an arbitrary number of spin-flips, with the current implementation being applicable for up to around 4 spin-flips. Two new methods are introduced: one which is developed using non-degenerate perturbation theory, spin-flip complete active-space (SF-CAS(S)), and a second quasidegenerate perturbation theory method, SF-CAS(S)1.
View Article and Find Full Text PDFWe propose a new method of chiral separation using functionalized nanoporous graphene as an example. Computational simulations based on density functional theory show that the attachment of a suitable chiral "bouncer" molecule to the pore rim prevents the passage of the undesired enantiomer while letting its mirror image through.
View Article and Find Full Text PDFA production-level implementation of equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) for electron attachment and excitation energies augmented by a complex absorbing potential (CAP) is presented. The new method enables the treatment of metastable states within the EOM-CC formalism in a similar manner as bound states. The numeric performance of the method and the sensitivity of resonance positions and lifetimes to the CAP parameters and the choice of one-electron basis set are investigated.
View Article and Find Full Text PDFA series of dimeric cobalt-diaryldithiolene complexes [Co(S2C2Ar2)2]2, possessing various aryl para substituents (OMe, F, Cl, and Br), were studied as electrocatalysts for proton reduction in nonaqueous media, in an effort to correlate dithiolene donor strength with catalyst activity. Cyclic voltammetry data acquired for the cobalt-diaryldithiolene dimers guided the isolation of chemically reduced monoanionic ([Co(S2C2Ar2)2](-)) and dianionic ([Co(S2C2Ar2)2](2-)) monomers. The potassium and tetrabutylammonium salts of dianionic cobalt-diaryldithiolene complexes have been characterized by single crystal X-ray crystallography.
View Article and Find Full Text PDFThe limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the training and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491 508 candidate functionals.
View Article and Find Full Text PDFThe dispersion-corrected second-order Møller-Plesset perturbation theory (MP2C) approach accurately describes intermolecular interactions in many systems. MP2C, however, expends much computational effort to compute the long-range correlation with MP2, only to discard and replace those contributions with a simpler long-range dispersion correction based on intermolecular perturbation theory. Here, we demonstrate that one can avoid calculating the long-range MP2 correlation by attenuating the Coulomb operator, allowing the dispersion correction to handle the long-range interactions inexpensively.
View Article and Find Full Text PDFWe describe an efficient implementation of the coupled cluster valence bond (CCVB) model. CCVB captures a certain essential part of the description of molecules with strong correlations (SC), which allows it to achieve correct energy profiles when covalent bonds are broken, while maintaining proper spin symmetry and size extensivity. To illustrate treatment of SC in bond breaking, we examine the symmetric dissociation of the sulfur allotropes S6 and S8 into triplet S atoms.
View Article and Find Full Text PDF