The objective of this study was to develop a Scale-Down Model of a hydrodynamic stress present in large scale production bioreactors to investigate the performance of CHO cells under simulated production bioreactor conditions. Various levels of hydrodynamic stress were generated in 2L bioreactors mimicking those present in different locations of a large scale stirred tank bioreactor. In general, it was observed that tested cells are highly robust against the effect of hydrodynamic stress.
View Article and Find Full Text PDFPC-3 human prostate cancer cells have been cultivated in a rotating wall vessel in which glucose, lactate, and glutamine profiles were monitored noninvasively and in real time by near-infrared (NIR) spectroscopy. The calibration models were based on off-line spectra from tissue culture experiments described previously (Rhiel et al., Biotechnol Bioeng 77:73-82).
View Article and Find Full Text PDFThe effect of the presence of metabolism-induced concentration correlations in the calibration samples on the prediction performance of partial least-squares regression (PLSR) models and mid-infrared spectra from Chinese hamster ovary cell cultures was investigated. Samples collected from batch cultures contained highly correlated metabolite concentrations as a result of metabolic relations. Calibrations based on such samples could only be used to predict concentrations in new samples if a similar correlation structure was present and failed when the new samples were randomly spiked with the analytes.
View Article and Find Full Text PDF