Publications by authors named "Martin H Rau"

When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits.

View Article and Find Full Text PDF

Streptococcus thermophilus is a lactic acid bacterium adapted toward growth in milk and is a vital component of starter cultures for milk fermentation. Here, we combine genome-scale metabolic modeling and transcriptome profiling to obtain novel metabolic insights into this bacterium. Notably, a refined genome-scale metabolic model (GEM) accurately representing S.

View Article and Find Full Text PDF

Manganese (Mn2+) is an essential trace element within organisms spanning the entire tree of life. In this review, we provide an overview of Mn2+ transport and the regulation of its homeostasis in bacteria, with a focus on its functions beyond being a cofactor for enzymes. Crucial differences in Mn2+ homeostasis exist between bacterial species that can be characterized to have an iron- or manganese-centric metabolism.

View Article and Find Full Text PDF

We characterized the global transcriptome of Escherichia coli MG1655:: tetA grown in the presence of ½ MIC (14 mg/L) of OTC, and for comparison WT MG1655 strain grown with 1//2 MIC of OTC (0.25 mg/L OTC). 1646 genes changed expression significantly (FDR > 0.

View Article and Find Full Text PDF

A prominent feature of lactic acid bacteria (LAB) is their ability to inhibit growth of spoilage organisms in food, but hitherto research efforts to establish the mechanisms underlying bioactivity focused on the production of antimicrobial compounds by LAB. We show, in this study, that competitive exclusion, i.e.

View Article and Find Full Text PDF

Comparative genomics has proven useful in exploring the biodiversity of phages and understanding phage-host interactions. This knowledge is particularly useful for phages infecting Streptococcus thermophilus, as they constitute a constant threat during dairy fermentations. Here, we explore the genetic diversity of S.

View Article and Find Full Text PDF

Genome-scale metabolic network reconstruction offers a means to leverage the value of the exponentially growing genomics data and integrate it with other biological knowledge in a structured format. Constraint-based modeling (CBM) enables both the qualitative and quantitative analyses of the reconstructed networks. The rapid advancements in these areas can benefit both the industrial production of microbial food cultures and their application in food processing.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding microbial bioconversion for producing bulk chemicals and biofuels is crucial, as high product levels can lead to toxicity; hence, improving strain tolerance is key.
  • A systems biology approach revealed E. coli's response to various chemical stressors, identifying 12 chemicals with production potential and significant changes in several metabolic functions and key regulatory genes.
  • Genome-wide screening of mutants under chemical stress showed that specific genetic changes can enhance growth rates by up to 60%, offering insights into potential targets for engineering more resilient E. coli strains.
View Article and Find Full Text PDF

Objectives: The aim of the study was to determine how ESBL-producing Escherichia coli change the expression of metabolic and biosynthesis genes when adapting to inhibitory concentrations of cefotaxime. Secondly, it was investigated whether significantly regulated pathways constitute putative secondary targets that can be used to combat the resistant bacteria.

Methods: Strains of E.

View Article and Find Full Text PDF

Background: Bacterial small RNAs (sRNAs) are recognized as posttranscriptional regulators involved in the control of bacterial lifestyle and adaptation to stressful conditions. Although chemical stress due to the toxicity of precursor and product compounds is frequently encountered in microbial bioprocessing applications, the involvement of sRNAs in this process is not well understood. We have used RNA sequencing to map sRNA expression in E.

View Article and Find Full Text PDF

Adaptation of bacterial pathogens to a permanently host-associated lifestyle by means of deletion or acquisition of genetic material is usually examined through comparison of present-day isolates to a distant theoretical ancestor. This limits the resolution of the adaptation process. We conducted a retrospective study of the dissemination of the P.

View Article and Find Full Text PDF

Background: Bacteria employ a variety of adaptation strategies during the course of chronic infections. Understanding bacterial adaptation can facilitate the identification of novel drug targets for better treatment of infectious diseases. Transcriptome profiling is a comprehensive and high-throughput approach for characterization of bacterial clinical isolates from infections.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa is a frequent colonizer of the airways of patients suffering from cystic fibrosis (CF). Depending on early treatment regimens, the colonization will, with high probability, develop into chronic infections sooner or later, and it is important to establish under which conditions the switch to chronic infection takes place. In association with a recently established sinus surgery treatment program for CF patients at the Copenhagen CF Center, colonization of the paranasal sinuses with P.

View Article and Find Full Text PDF

Laboratory evolution experiments have led to important findings relating organism adaptation and genomic evolution. However, continuous monitoring of long-term evolution has been lacking for natural systems, limiting our understanding of these processes in situ. Here we characterize the evolutionary dynamics of a lineage of a clinically important opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it adapts to the airways of several individual cystic fibrosis patients over 200,000 bacterial generations, and provide estimates of mutation rates of bacteria in a natural environment.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic pathogen ubiquitous to the natural environment but with the capability of moving to the host environment. Long-term infection of the airways of cystic fibrosis patients is associated with extensive genetic adaptation of P. aeruginosa, and we have studied cases of the initial stages of infection in order to characterize the early adaptive processes in the colonizing bacteria.

View Article and Find Full Text PDF