Solid organ transplantation remains the life-saving treatment for end-stage organ failure, but chronic rejection remains a major obstacle to long-term allograft outcomes and has not improved substantially. Tertiary lymphoid organs (TLOs) are ectopic lymphoid structures that form under conditions of chronic inflammation, and evidence from human transplantation suggests that TLOs regularly form in allografts undergoing chronic rejection. In this study, we utilized a mouse renal transplantation model and manipulation of the lymphotoxin αβ/lymphotoxin β receptor (LTαβ/LTβR) pathway, which is essential for TLO formation, to define the role of TLOs in transplantation.
View Article and Find Full Text PDFOur understanding of tissue-resident memory T (T) cell biology has been largely developed from acute infection models in which antigen is cleared and sterilizing immunity is achieved. Less is known about T cells in the context of chronic antigen persistence and inflammation. We investigated factors that underlie T maintenance in a kidney transplantation model in which T cells drive rejection.
View Article and Find Full Text PDFIn allogeneic hematopoietic stem cell transplantation, donor αβ T cells attack recipient tissues, causing graft-versus-host disease (GVHD), a major cause of morbidity and mortality. A central question has been how GVHD is sustained despite T cell exhaustion from chronic antigen stimulation. The current model for GVHD holds that disease is maintained through the continued recruitment of alloreactive effectors from blood into affected tissues.
View Article and Find Full Text PDFBackground: Allergic contact dermatitis (CD) is a chronic inflammatory skin disease caused by type 1 biased adaptive immunity for which there is an unmet need for antigen (Ag)-specific immunotherapies. Exposure to skin sensitizers stimulates secretion of the proinflammatory neuropeptides substance P and hemokinin 1, which signal via the neurokinin-1 receptor (NK1R) to promote the innate and adaptive immune responses of CD. Accordingly, mice lacking the NK1R develop impaired CD.
View Article and Find Full Text PDFSuccessful allogeneic transplantation has been made possible by suppressing activation of the adaptive immune system. Current immunosuppressive therapy prevents rejection by targeting T and B cells. Despite this effective treatment, it is the innate immune system, which includes dendritic cells, monocytes, natural killer cells, that is responsible for the initiation of the adaptive immune response.
View Article and Find Full Text PDFTissue-resident memory T cells (T) contained at sites of previous infection provide local protection against reinfection. Whether they form and function in organ transplants where cognate antigen persists is unclear. This is a key question in transplantation as T cells are detected long term in allografts, but it is not known whether they are exhausted or are functional memory T cells.
View Article and Find Full Text PDFDespite the role of donor-specific antibodies (DSAs) in recognizing major histocompatibility complex (MHC) antigens and mediating transplant rejection, how and where recipient B cells in lymphoid tissues encounter donor MHC antigens remains unclear. Contrary to the dogma, we demonstrated here that migration of donor leukocytes out of skin or heart allografts is not necessary for B or T cell allosensitization in mice. We found that mouse skin and cardiac allografts and human skin grafts release cell-free donor MHC antigens via extracellular vesicles (EVs) that are captured by subcapsular sinus (SCS) macrophages in lymph nodes or analog macrophages in the spleen.
View Article and Find Full Text PDFAlarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell proinflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin 33 (IL-33) is a local factor that directly restricts the proinflammatory capacity of graft-infiltrating macrophages early after transplantation.
View Article and Find Full Text PDFOver the past few decades, we have witnessed a decline in the rates of acute rejection without significant improvement in chronic rejection. Current treatment strategies principally target the adaptive immune response and not the innate response. Therefore, better understanding of innate immunity in transplantation and how to target it is highly desirable.
View Article and Find Full Text PDFImmunological memory specific to previously encountered antigens is a cardinal feature of adaptive lymphoid cells. However, it is unknown whether innate myeloid cells retain memory of prior antigenic stimulation and respond to it more vigorously on subsequent encounters. In this work, we show that murine monocytes and macrophages acquire memory specific to major histocompatibility complex I (MHC-I) antigens, and we identify A-type paired immunoglobulin-like receptors (PIR-As) as the MHC-I receptors necessary for the memory response.
View Article and Find Full Text PDFActivation of host T cells that mediate allograft rejection is a 2-step process. The first occurs in secondary lymphoid organs where T cells encounter alloantigens presented by host DCs and differentiate to effectors. Antigen presentation at these sites occurs principally via transfer of intact, donor MHC-peptide complexes from graft cells to host DCs (cross-dressing) or by uptake and processing of donor antigens into allopeptides bound to self-MHC molecules (indirect presentation).
View Article and Find Full Text PDFKidney transplantation is the treatment of choice for ESRD but is complicated by the response of the recipient's immune system to nonself histocompatibility antigens on the graft, resulting in rejection. Multiphoton intravital microscopy, referred to as four-dimensional imaging because it records dynamic events in three-dimensional tissue volumes, has emerged as a powerful tool to study immunologic processes in living animals. Here, we will review advances in understanding the complex mechanisms of T cell-mediated rejection made possible by four-dimensional imaging of mouse renal allografts.
View Article and Find Full Text PDFMice devoid of T, B, and natural killer (NK) cells distinguish between self and allogeneic nonself despite the absence of an adaptive immune system. When challenged with an allograft, they mount an innate response characterized by accumulation of mature, monocyte-derived dendritic cells (DCs) that produce interleukin-12 and present antigen to T cells. However, the molecular mechanisms by which the innate immune system detects allogeneic nonself to generate these DCs are not known.
View Article and Find Full Text PDFSuccessful engraftment of organ transplants has traditionally relied on preventing the activation of recipient (host) T cells. Once T-cell activation has occurred, however, stalling the rejection process becomes increasingly difficult, leading to graft failure. Here we demonstrate that graft-infiltrating, recipient (host) dendritic cells (DCs) play a key role in driving the rejection of transplanted organs by activated (effector) T cells.
View Article and Find Full Text PDFBony fish are among the first vertebrates to possess an innate and adaptive immune system. In these species, the kidney has a dual function: filtering solutes similar to mammals and acting as a lymphoid organ responsible for hematopoiesis and antigen processing. Recent studies have shown that the mammalian kidney has an extensive network of mononuclear phagocytes, whose function is not fully understood.
View Article and Find Full Text PDFPancreatic islet transplantation is a promising therapy for diabetes, but acute rejection of the islets by host effector T cells has hindered clinical application. In this study, we addressed the mechanisms of CD8(+) effector T cell migration to islet grafts because interrupting this step is key to preventing rejection. We found that effector T cell migration to revascularized islet transplants in mice is dependent on non-self Ag recognition rather than signaling via Gαi-coupled chemokine receptors.
View Article and Find Full Text PDFMaturation of T cell-activating APCs directly links innate and adaptive immunity and is typically triggered by microbial infection. Transplantation of allografts, which are sterile, generates strong T cell responses; however, it is unclear how grafts induce APC maturation in the absence of microbial-derived signals. A widely accepted hypothesis is that dying cells in the graft release "danger" molecules that induce APC maturation and initiate the adaptive alloimmune response.
View Article and Find Full Text PDFVertebrates mount strong adaptive immune responses to transplanted organs (allografts), but the mechanisms by which the innate immune system initiates this response are not completely understood. In anti-microbial immunity, non-self molecules associated with pathogens but not present in the host induce the maturation of innate antigen-presenting cells (APCs) by binding to germ-line-encoded receptors. Mature APCs then initiate the adaptive immune response by presenting microbial antigen and providing costimulatory signals to T cells.
View Article and Find Full Text PDFThe migration of effector or memory T cells to the graft is a critical event in the rejection of transplanted organs. The prevailing view is that the key steps involved in T cell migration - integrin-mediated firm adhesion followed by transendothelial migration - are dependent on the activation of Gαi-coupled chemokine receptors on T cells. In contrast to this view, we demonstrated in vivo that cognate antigen was necessary for the firm adhesion and transendothelial migration of CD8+ effector T cells specific to graft antigens and that both steps occurred independent of Gαi signaling.
View Article and Find Full Text PDFThe vertebrate innate immune system consists of inflammatory cells and soluble mediators that comprise the first line of defense against microbial infection and, importantly, trigger antigen-specific T and B cell responses that lead to lasting immunity. The molecular mechanisms responsible for microbial non-self recognition by the innate immune system have been elucidated for a large number of pathogens. How the innate immune system recognizes non-microbial non-self, such as organ transplants, is less clear.
View Article and Find Full Text PDFBackground: Memory T cells migrate to and reject transplanted organs without the need for priming in secondary lymphoid tissues, but the mechanisms by which they do so are not known. Here, we tested whether CXCR3, implicated in the homing of effector T cells to sites of infection, is critical for memory T-cell migration to vascularized allografts.
Methods: CD4 and CD8 memory T cells were sorted from alloimmunized CXCR3 and wildtype B6 mice and cotransferred to congenic B6 recipients of BALB/c heart allografts.
T cells present in lymphopenic environments undergo spontaneous (homeostatic) proliferation resulting in expansion of the memory T cell pool. Homeostatically generated memory T cells protect the host against infection but can cause autoimmunity and allograft rejection. Therefore, understanding the mechanisms that regulate homeostatic T cell proliferation is germane to clinical settings in which lymphodepletion is used.
View Article and Find Full Text PDFNaive T cell circulation is restricted to secondary lymphoid organs. Effector and memory T cells, in contrast, acquire the ability to migrate to nonlymphoid tissues. In this study we examined whether nonlymphoid tissues contribute to the differentiation of effector T cells to memory cells and the long-term maintenance of memory T cells.
View Article and Find Full Text PDF