Lipase/metal nanobiohybrids, generated by growth of silver or gold nanoparticles on protein matrixes are used as highly effective dual-activity heterogeneous catalysts for the production of enantiomerically enriched 2,5-dihydrofurans from allenic acetates in a one-pot cascade process combining a lipase-mediated hydrolytic kinetic resolution with a metal-catalyzed allene cycloisomerization. Incorporating a novel strategy based on enzyme-polymer bioconjugates in the nanobiohybrid preparation enables excellent conversions in the process. lipase B (CALB) in combination with a dextran-based polymer modifier (DexAsp) proved to be most efficient when merged with silver nanoparticles.
View Article and Find Full Text PDFThe oxidative ring expansion of bio-derived furfuryl alcohols to densely functionalized six-membered O-heterocycles represents an attractive strategy in the growing network of valorization routes to synthetic building blocks out of the lignocellulosic biorefinery feed. In this study, two scenarios for the biocatalytic Achmatowicz-type rearrangement using methanol as terminal sacrificial reagent have been evaluated, comparing multienzymatic cascade designs with a photo-bio-coupled activation pathway.
View Article and Find Full Text PDFCu/TEMPO catalyst systems are known for the selective transformation of alcohols to aldehydes, as well as for the simultaneous coupling of alcohols and amines to imines under oxidative conditions. In this study, such a Cu/TEMPO catalyst system is found to catalyze the N-formylation of a variety of amines by initial oxidative activation of methanol as the carbonyl source via formaldehyde and formation of N,O-hemiacetals and oxidation of the latter under very mild conditions. A vast range of amines, including aromatic and aliphatic, primary and secondary, and linear and cyclic amines are formylated under these conditions with good to excellent yields.
View Article and Find Full Text PDFMicrobial methylotrophic organisms can serve as great inspiration in the development of biomimetic strategies for the dehydrogenative conversion of C molecules under ambient conditions. In this Concept article, a concise personal perspective on the recent advancements in the field of biomimetic catalytic models for methanol and formaldehyde conversion, in the presence and absence of enzymes and co-factors, towards the formation of hydrogen under ambient conditions is given. In particular, formaldehyde dehydrogenase mimics have been introduced in stand-alone C -interconversion networks.
View Article and Find Full Text PDFOver 30 megatons of formaldehyde are required per year and industrially produced through three high-temperature gas-phase processes: i) natural gas reforming to syngas, ii) methanol synthesis, and iii) partial oxidation to formaldehyde with limited selectivity. In vast contrast to these energy-intensive oxidative and dehydrogenative methods, a reductive "top-down" methodology using CO and CO as carbon source would be desirable and is not very well present in the literature for more than 100 years. The key to success is the reaction performance in liquid solution in water or methanol at low temperature.
View Article and Find Full Text PDFMethylated amines are highly important for a variety of pharmaceutical and agrochemical applications. Existing routes for their formation result in the production of large amounts of waste or require high reaction temperatures, both of which impact the ecological and economical footprint of the methodologies. Herein, we report the ruthenium-catalyzed reductive methylation of a range of aliphatic amines, using paraformaldehyde as both substrate and hydrogen source, in combination with water.
View Article and Find Full Text PDFThe catalytic networks of methylotrophic organisms, featuring redox enzymes for the activation of one-carbon moieties, can serve as great inspiration in the development of novel homogeneously catalyzed pathways for the interconversion of C1 molecules at ambient conditions. An imidazolium-tagged arene-ruthenium complex was identified as an effective functional mimic of the bacterial formaldehyde dismutase, which provides a new and highly selective route for the conversion of formaldehyde to methanol in absence of any external reducing agents. Moreover, secondary amines are reductively methylated by the organometallic dismutase mimic in a redox self-sufficient manner with formaldehyde acting both as carbon source and reducing agent.
View Article and Find Full Text PDFA selective hydrogenation method for forming (Z)-alkenes from alkynes has been developed using a catalyst system of cheap Ni-NPs in a nitrile functionalised imidazolium based ionic liquid (IL) operating under very mild reaction conditions of 30-50 °C and 1-4 bar H2 pressure.
View Article and Find Full Text PDFHerein we demonstrate the use of ethylenediamine bisborane (EDAB) as a suitable hydrogen source for transfer hydrogenation reactions on C-C double bonds mediated by metal nanoparticles. Moreover, EDAB also acts as a reducing agent for carbonyl functionalities in water under metal-free conditions.
View Article and Find Full Text PDFImitating nature's approach in nucleophile-activated formaldehyde dehydrogenation, air-stable ruthenium complexes proved to be exquisite catalysts for the dehydrogenation of formaldehyde hydrate as well as for the transfer hydrogenation to unsaturated organic substrates at loadings as low as 0.5 mol %. Concatenation of the chemical hydrogen-fixation route with an oxidase-mediated activation of methanol gives an artificial methylotrophic in vitro metabolism providing methanol-derived reduction equivalents for synthetic hydrogenation purposes.
View Article and Find Full Text PDFIn this work, we present a mild method for direct conversion of primary alcohols into carboxylic acids with the use of water as an oxygen source. Applying a ruthenium dihydrogen based dehydrogenation catalyst for this cause, we investigated the effect of water on the catalytic dehydrogenation process of alcohols. Using 1 mol% of the catalyst we report up to high yields.
View Article and Find Full Text PDFIonic liquid (IL) based H2 storage for H2 generation from NH3BH3 derivatives is shown. These systems promote H2 generation at low temperature, with good reaction rates and high total H2 yields. The effects of ILs and the H2 yield in correlation with the basicity, the cations of the ILs, and the role of carbenes are discussed.
View Article and Find Full Text PDFWith the increased efforts in finding new energy storage systems for mobile and stationary applications, an intensively studied fuel molecule is dihydrogen owing to its energy content, and the possibility to store it in the form of hydridic and protic hydrogen, for example, in liquid organic hydrogen carriers. Here we show that water in the presence of paraformaldehyde or formaldehyde is suitable for molecular hydrogen storage, as these molecules form stable methanediol, which can be easily and selectively dehydrogenated forming hydrogen and carbon dioxide. In this system, both molecules are hydrogen sources, yielding a theoretical weight efficiency of 8.
View Article and Find Full Text PDFIron(0) nanoparticles in ionic liquids (ILs) have been shown to catalyse the semi-hydrogenation of alkynes. In the presence of a nitrile-functionalised IL or acetonitrile, stereoselective formation of (Z)-alkenes was observed. The biphasic solvent system allowed facile separation and re-use of the catalyst.
View Article and Find Full Text PDFIn this paper the synthesis and characterisation of ruthenium dihydrogen complexes bearing rigid aliphatic PNP pincer-type ligands are described. As one result hydride complexes were synthesised in good to high yields by a one-pot direct hydrogenation reaction. As another finding the dihydrogen complex, stabilised with a N-Me group in the ligand frame, can be converted with dimethylamine borane into a rare σ-boron complex [RuH2(BH3)(Me-PNP)] with rapid B-N decoupling.
View Article and Find Full Text PDFNanoscopic amorphous Lewis acidic aluminium fluorides, such as aluminium chlorofluoride (ACF) and high-surface aluminium fluoride (HS-AlF(3)), are capable of activating C-H bonds of aliphatic hydrocarbons. H/D exchange reactions are catalysed under mild conditions (40 °C).
View Article and Find Full Text PDFSputtering deposition of gold onto the 1-(butyronitrile)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BCN)MI·N(Tf)(2) ionic liquid (IL) has generated colloidal and stable gold nanospheres (AuNS) and gold nanodisks (AuND) in a bimodal size distribution. Upon increasing the sputtering discharge voltage, three distinct phenomena were observed: (i) the mean diameter of both AuNS and AuND decreased; (ii) the population with lower diameters increased and (iii) the formation of AuND disappeared at voltages higher than 340 V. By dissolving the colloidal gold nanoparticles (AuNPs) in isopropanol and dropping the product onto carbon-coated Cu grids, 2D and 3D superlattices tended to be formed, as observed by transmission electron microscopy (TEM).
View Article and Find Full Text PDFThe organometallic complexes ([Ru(COD)(2-methylallyl)2] and [Ni(COD)2] (COD=1,5-cyclooctadiene) dissolved in imidazolium ionic liquids (ILs) undergo reduction and decomposition, respectively, to afford stable ruthenium and nickel metal(0) nanoparticles (Ru(0)-NPs and Ni(0)-NPs) in the absence of classical reducing agents. Depending on the case, the reduction/auto-decomposition is promoted by either the cation and/or anion of the neat imidazolium ILs.
View Article and Find Full Text PDFA brief summary of selected pioneering and mechanistic contributions in the field of carbon-carbon cross-coupling reactions with palladium nanoparticles (Pd-NPs) in ionic liquids (ILs) is presented. Five exemplary model systems using the Pd-NPs/ILs approach are presented: Heck, Suzuki, Stille, Sonogashira and Ullmann reactions which all have in common the use of ionic liquids as reaction media and the use of palladium nanoparticles as reservoir for the catalytically active palladium species.
View Article and Find Full Text PDFThe reduction of [Ru(COD)(2-methylallyl) 2] (COD = 1,5-cyclooctadiene) dispersed in various room-temperature ionic liquids (ILs), namely, 1- n-butyl-3-methylimidazolium (BMI) and 1- n-decyl-3-methylimidazolium (DMI), associated with the N-bis(trifluoromethanesulfonyl)imidates (NTf 2) and the corresponding tetrafluoroborates (BF 4) with hydrogen gas (4 bar) at 50 degrees C leads to well-dispersed immobilized nanoparticles. Transmission electron microscopy (TEM) analysis of the particles dispersed in the ionic liquid shows the presence of [Ru(0)] n nanoparticles (Ru-NPs) of 2.1-3.
View Article and Find Full Text PDFThe potential of pincer complexes [M(H)(2)(H(2))(PXP)] (M=Fe, Ru, Os; X=N, O, S) to coordinate, activate, and thus catalyze the reaction of N(2) with classical or nonclassical hydrogen centers present at the metal center, with the aim of forming NH(3) with H(2) as the only other reagent, was explored by means of DF (density functional) calculations. Screening of various complexes for their ability to perform initial hydrogen transfer to coordinated N(2) showed ruthenium pincer complexes to be more promising than the corresponding iron and osmium analogues. The ligand backbone influences the reaction dramatically: the presence of pyridine and thioether groups as backbones in the ligand result in inactive catalysts, whereas ether groups such as gamma-pyran and furan enable the reaction and result in unprecedented low activation barriers (23.
View Article and Find Full Text PDFThe synthesis and characterisation of nonclassical ruthenium hydride complexes containing bidentate PP and tridentate PCP and PNP pincer-type ligands are described. The mononuclear and dinuclear ruthenium complexes presented have been synthesised in moderate to high yields by the direct hydrogenation route (one-pot synthesis) or in a two-step procedure. In both cases [Ru(cod)(metallyl)(2)] served as a readily available precursor.
View Article and Find Full Text PDF