Spontaneous phase separation of materials is a powerful strategy to generate highly defined 2D nanomorphologies with novel properties and functions. Exemplary are such morphologies in block copolymers or amphiphilic systems, whose formation can be well predicted based on parameters such as volume fraction and shape factor. In contrast, the formation of 2D nanomorphologies is currently unpredictable in materials perfectly defined at the molecular level, in which crystallinity plays a significant role.
View Article and Find Full Text PDFEfficient energy transport over long distances is essential for optoelectronic and light-harvesting devices. Although self-assembled nanofibers of organic molecules are shown to exhibit long exciton diffusion lengths, alignment of these nanofibers into films with large, organized domains with similar properties remains a challenge. Here, it is shown how the functionalization of C -symmetric carbonyl-bridged triarylamine trisamide (CBT) with oligodimethylsiloxane (oDMS) side chains of discrete length leads to fully covered surfaces with aligned domains up to 125 × 70 µm in which long-range exciton transport takes place.
View Article and Find Full Text PDFThe assembly of donor-acceptor molecules charge transfer (CT) interactions gives rise to highly ordered nanomaterials with appealing electronic properties. Here, we present the synthesis and bulk co-assembly of pyrene (Pyr) and naphthalenediimide (NDI) functionalized oligodimethylsiloxanes (oDMS) of discrete length. We tune the donor-acceptor interactions by connecting the pyrene and NDI to the same oligomer, forming a heterotelechelic block molecule (NDI-oDMSPyr), and to two separate oligomers, giving Pyr and NDI homotelechelic block molecules (Pyr-oDMS and NDI-oDMS).
View Article and Find Full Text PDFMaterials based on the laminar ordering of self-assembled molecules have a unique potential for applications requiring efficient energy migration through densely packed chromophores. Here, employing molecular assemblies of coil-rod-coil block molecules for triplet-triplet annihilation upconversion (TTA-UC) based on triplet energy migration with linearly polarized emission is reported. By covalently attaching discrete-length oligodimethylsiloxane (oDMS) to 9,10-diphenylanthracene (DPA), highly ordered 2D crystalline DPA sheets separated by oDMS layers are obtained.
View Article and Find Full Text PDFCrystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing.
View Article and Find Full Text PDFThe scope and accessibility of sequence-controlled multiblock copolymers is demonstrated by direct "in situ" polymerization of hydrophobic, hydrophilic and fluorinated monomers. Key to the success of this strategy is the ability to synthesize ABCDE, EDCBA and EDCBABCDE sequences with high monomer conversions (>98 %) through iterative monomer additions, yielding excellent block purity and low overall molar mass dispersities (Ð<1.16).
View Article and Find Full Text PDF