An ability to measure the biochemical parameters and structures of protein complexes at defined locations within the cellular environment would improve our understanding of cellular function. We describe widely applicable, calibrated Förster resonance energy transfer methods that quantify structural and biochemical parameters for interaction of the human estrogen receptor alpha-isoform (ER alpha) with the receptor interacting domains (RIDs) of three cofactors (SRC1, SRC2, SRC3) in living cells. The interactions of ER alpha with all three SRC-RIDs, measured throughout the cell nucleus, transitioned from structurally similar, high affinity complexes containing two ER alphas at low free SRC-RID concentrations (<2 nm) to lower affinity complexes with an ER alpha monomer at higher SRC-RID concentrations (approximately 10 nm).
View Article and Find Full Text PDFForster resonance energy transfer (FRET) detection of protein interaction in living cells is commonly measured following the expression of interacting proteins genetically fused to the cyan (CFP) and yellow (YFP) derivatives of the Aequorea victoria fluorescent protein (FP). These FPs can dimerize at mM concentrations, which may introduce artifacts into the measurement of interaction between proteins that are fused with the FPs. Here, FRET analysis of the interaction between estrogen receptors (alpha isoform, ERalpha) labeled with "wild-type" CFP and YFP is compared with that of ERalpha labeled with "monomeric" A206K mutants of CFP and YFP.
View Article and Find Full Text PDFNuclear receptors (NRs) are ligand-regulated transcription factors important in human physiology and disease. In certain NRs, including the androgen receptor (AR), ligand binding to the carboxy-terminal domain (LBD) regulates transcriptional activation functions in the LBD and amino-terminal domain (NTD). The basis for NTD-LBD communication is unknown but may involve NTD-LBD interactions either within a single receptor or between different members of an AR dimer.
View Article and Find Full Text PDF