Publications by authors named "Martin Gruene"

Due to its biological significance, cell adhesion to biomaterial surfaces or scaffolds is the key step in biomedical applications. Here, we describe two sensitive and facile methods that quantify the kinetic and mechanic properties of the entire cell attachment process characterized by two parameters: Adhesion Time T(Ad) and Adhesion Force F(Ad). We demonstrate that both methods can be applied to any adherent cell type (e.

View Article and Find Full Text PDF

For the aim of ex vivo engineering of functional tissue substitutes, Laser-assisted BioPrinting (LaBP) is under investigation for the arrangement of living cells in predefined patterns. So far three-dimensional (3D) arrangements of single or two-dimensional (2D) patterning of different cell types have been presented. It has been shown that cells are not harmed by the printing procedure.

View Article and Find Full Text PDF

Recent study showed that mesenchymal stem cells (MSC) could inhibit apoptosis of endothelial cells in hypoxic condition, increase their survival, and stimulate the angiogenesis process. In this project we applied Laser-Induced-Forward-Transfer (LIFT) cell printing technique and prepared a cardiac patch seeded with human umbilical vein endothelial cells (HUVEC) and human MSC (hMSC) in a defined pattern for cardiac regeneration. We seeded HUVEC and hMSC in a defined pattern on a Polyester urethane urea (PEUU) cardiac patch.

View Article and Find Full Text PDF

Utilization of living cells for therapies in regenerative medicine requires a fundamental understanding of the interactions between different cells and their environment. Moreover, common models based on adherent two-dimensional cultures are not appropriate to simulate the complex interactions that occur in a three-dimensional (3D) cell-microenvironment in vivo. In this study, we present a computer-aided method for the printing of multiple cell types in a 3D array using laser-assisted bioprinting.

View Article and Find Full Text PDF

Background: Laser-assisted bioprinting of multi-cellular replicates in accordance with CAD blueprint may substantially improve our understandings of fundamental aspects of 3 D cell-cell and cell-matrix interactions in vitro. For predictable printing results, a profound knowledge about effects of different processing parameters is essential for realisation of 3 D cell models with well-defined cell densities.

Methods: Time-resolved imaging of the hydrogel jet dynamics and quantitative assessment of the dependence of printed droplet diameter on the process characteristics were conducted.

View Article and Find Full Text PDF

Stem cells are of widespread interest in regenerative medicine due to their capability of self-renewal and differentiation, which is regulated by their three-dimensional microenvironment. In this study, a computer-aided biofabrication technique based on laser-induced forward transfer (LIFT) is used to generate grafts consisting of mesenchymal stem cells (MSCs). We demonstrate that (i) laser printing does not cause any cell damage; (ii) laser-printed MSC grafts can be differentiated toward bone and cartilage; (iii) LIFT allows printing of cell densities high enough for the promotion of chondrogenesis; (iv) with LIFT three-dimensional scaffold-free autologous tissue grafts can be fabricated keeping their predefined structure, and (v) predifferentiated MSCs survived the complete printing procedure and kept their functionality.

View Article and Find Full Text PDF

Laser printing based on laser-induced forward transfer (LIFT) is a new biofabrication technique for the arrangement of biological materials or living cells in well-defined patterns. In the current study, skin cell lines (fibroblasts/keratinocytes) and human mesenchymal stem cells (hMSC) were chosen for laser printing experiments due to their high potential in regeneration of human skin and new application possibilities of stem cell therapy. To evaluate the influence of LIFT on the cells, their survival rate, their proliferation and apoptotic activity, and the DNA damages and modifications of their cell surface markers were assessed and statistically evaluated over several days.

View Article and Find Full Text PDF