Small RNAs are used to silence transposable elements (TEs) in many eukaryotes, which use diverse evolutionary solutions to identify TEs. In ciliated protozoans, small-RNA-mediated comparison of the germline and somatic genomes underlies identification of TE-related sequences, which are then eliminated from the soma. Here, we describe an additional mechanism of small-RNA-mediated identification of TE-related sequences in the ciliate Tetrahymena.
View Article and Find Full Text PDFSystems analysis of chromatin has been constrained by complex patterns and dynamics of histone post-translational modifications (PTMs), which represent major challenges for both mass spectrometry (MS) and immuno-based approaches (e.g., chromatin immuno-precipitation, ChIP).
View Article and Find Full Text PDFH2A.Y is an essential, divergent Tetrahymena thermophila histone variant. It has a long nonhistone N terminus that contains leucine-rich repeats (LRR) and an LRR cap domain with similarity to Sds22p, a regulator of yeast protein phosphatase 1 (PP1) activity in the nucleus.
View Article and Find Full Text PDFGenetically programmed DNA rearrangements can regulate mRNA expression at an individual locus or, for some organisms, on a genome-wide scale. Ciliates rely on a remarkable process of whole-genome remodeling by DNA elimination to differentiate an expressed macronucleus (MAC) from a copy of the germline micronucleus (MIC) in each cycle of sexual reproduction. Here we describe results from the first high-throughput sequencing effort to investigate ciliate genome restructuring, comparing Sanger long-read sequences from a Tetrahymena thermophila MIC genome library to the MAC genome assembly.
View Article and Find Full Text PDFTetrahymena thermophila is a model eukaryotic organism. Functional genomic analyses in Tetrahymena present rich opportunities to address fundamental questions of cell and molecular biology. The Tetrahymena Gene Expression Database (TGED; available at http://tged.
View Article and Find Full Text PDFEmerging evidence suggests that RNA interference (RNAi)-related processes act both in the cytoplasm and in the nucleus. However, the process by which the RNAi machinery is transported into the nucleus remains poorly understood. The Tetrahymena Argonaute protein Twi1p localizes to the nucleus and is crucial for small RNA-directed programmed DNA elimination.
View Article and Find Full Text PDFUbiquitylation of histone H2B and/or a component of the system that ubiquitylates H2B is required for methylation of histone H3 at lysine 4 (H3K4) in yeasts and probably in humans. In this study, the single ubiquitylation site was mapped to conserved lysine 115 of the C-terminal region of histone H2B in the single-cell model organism Tetrahymena thermophila. In strains lacking H2B ubiquitylation, H3K4 methylation was not detectably affected.
View Article and Find Full Text PDFIn conjugating Tetrahymena thermophila, massive DNA elimination occurs upon the development of the new somatic genome from the germ line genome. Small, approximately 28-nucleotide scan RNAs (scnRNAs) and Twi1p, an Argonaute family member, mediate H3K27me3 and H3K9me3 histone H3 modifications, which lead to heterochromatin formation and the excision of the heterochromatinized germ line-limited sequences. In our search for new factors involved in developmental DNA rearrangement, we identified two Twi1p-interacting proteins, Wag1p and CnjBp.
View Article and Find Full Text PDFThe macro- and micronuclei of Tetrahymena reside in the same cytoplasm but are about as different as night and day. This extreme case of nuclear dimorphism can now be partially attributed to differences in the subunit compositions of their nuclear pore complexes.
View Article and Find Full Text PDFBackground: The model eukaryote, Tetrahymena thermophila, is the first ciliated protozoan whose genome has been sequenced, enabling genome-wide analysis of gene expression.
Methodology/principal Findings: A genome-wide microarray platform containing the predicted coding sequences (putative genes) for T. thermophila is described, validated and used to study gene expression during the three major stages of the organism's life cycle: growth, starvation and conjugation.
Tetrahymena eliminates micronuclear-limited sequences from the developing macronucleus during sexual reproduction. Homology between the sequences to be eliminated and approximately 28-nucleotide small RNAs (scnRNAs) associated with an Argonaute family protein Twi1p likely underlies this elimination process. However, the mechanism by which Twi1p-scnRNA complexes identify micronuclear-limited sequences is not well understood.
View Article and Find Full Text PDFTubulin undergoes glutamylation, a conserved posttranslational modification of poorly understood function. We show here that in the ciliate Tetrahymena, most of the microtubule arrays contain glutamylated tubulin. However, the length of the polyglutamyl side chain is spatially regulated, with the longest side chains present on ciliary and basal body microtubules.
View Article and Find Full Text PDFIntraflagellar transport (IFT) moves multiple protein particles composed of two biochemically distinct complexes, IFT-A and IFT-B, bi-directionally within cilia and is essential for cilia assembly and maintenance. We identified an ORF from the Tetrahymena macronuclear genome sequence, encoding IFT122A, an ortholog of an IFT-A complex protein. Tetrahymena IFT122A is induced during cilia regeneration, and epitope-tagged Ift122Ap could be detected in isolated cilia.
View Article and Find Full Text PDFIntraflagellar transport (IFT) particles are multiprotein complexes that move bidirectionally along the cilium/flagellum. The Tetrahymena IFT172 gene encodes a protein with an N-terminal WD domain (WDD) and a C-terminal repeat domain (RPD). Epitope-tagged Ift172p localized to the basal body and in cilia along the axoneme, and IFT172 knockout cells lost cilia and motility.
View Article and Find Full Text PDFPhosphorylation of the C terminus SQ motif that defines H2A.X variants is required for efficient DNA double-strand break (DSB) repair in diverse organisms but has not been studied in ciliated protozoa. Tetrahymena H2A.
View Article and Find Full Text PDFTetrahymena thermophila macronuclear histone H1 is phosphorylated by a cdc2 kinase, and H1 phosphorylation regulates CDC2 expression by a positive feedback mechanism. In starved wild-type cells, decreased expression of the CDC2 gene is correlated with a global reduction in the phosphorylation of H1 and reduced phosphorylation of H1 in the region upstream of the CDC2 gene. To determine whether the reduced H1 phosphorylation upstream of the CDC2 gene is merely a reflection of global dephosphorylation or is due to specific targeting of dephosphorylation of H1 to the CDC2 promoter during starvation, the CDC2 promoter was mapped, and the distributions of phosphorylated and unphosphorylated H1 across the CDC2 gene were determined using chromatin immunoprecipitation.
View Article and Find Full Text PDFGlycylation is an uncommon posttranslational modification. It has been found that tubulin glycylation is essential for cell survival in Tetrahymena. Here we describe PGP1, a Tetrahymena gene encoding an Hsp70 homologue that is a novel glycylated protein.
View Article and Find Full Text PDFThe ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction.
View Article and Find Full Text PDFMol Cell Biol
October 2006
In Tetrahymena, HHT1 and HHT2 genes encode the same major histone H3; HHT3 and HHT4 encode similar minor H3 variants (H3s), H3.3 and H3.4.
View Article and Find Full Text PDFThe Tetrahymena thermophila CNA1 gene encodes the centromeric H3, Cna1p. Green fluorescent protein (GFP)-tagged Cna1p localizes in micronuclei in dots whose number and behavior during mitosis and conjugation are consistent with centromeres. During interphase, Cna1p-GFP localizes in peripheral dots, suggesting centromeres are associated with the nuclear envelope.
View Article and Find Full Text PDFWe have used in vitro mutagenesis and gene replacement to study the function of the nucleotide-binding domain (NBD) of gamma-tubulin in Tetrahymena thermophila. In this study, we show that the NBD has an essential function and that point mutations in two conserved residues lead to over-production and mislocalization of basal body (BB) assembly. These results, coupled with previous studies (Dammermann, A.
View Article and Find Full Text PDFIn Tetrahymena thermophila, highly phosphorylated histone H1 of growing cells becomes partially dephosphorylated when cells are starved in preparation for conjugation. To determine the effects of H1 phosphorylation on gene expression, PCR-based subtractive hybridization was used to clone cDNAs that were differentially expressed during starvation in two otherwise-isogenic strains differing only in their H1s. H1 in A5 mutant cells lacked phosphorylation, and H1 in E5 cells mimicked constitutive H1 phosphorylation.
View Article and Find Full Text PDFIn the ciliate Tetrahymena thermophila, approximately 15% of the germ line micronuclear DNA sequences are eliminated during formation of the somatic macronucleus. The vast majority of the internal eliminated sequences (IESs) are repeated in the micronuclear genome, and several of them resemble transposable elements. Thus, it has been suggested that DNA elimination evolved as a means for removing invading DNAs.
View Article and Find Full Text PDF