Publications by authors named "Martin Gonzalo Bellino"

Biological signaling correlates with the interrelation between ion and nanofluidic transportation pathways. However, artificial embodies with reconfigurable ion-fluid transport interaction aspects remain largely elusive. Herein, we unveiled an intimate interplay between nanopore-driven advancing flow and ion carriage for the spontaneous imbibition of aqueous solutions at the nanoporous thin film level.

View Article and Find Full Text PDF

UV-irradiation method has grown as an alternative approach to in situ synthetize silver nanoparticles (AgNPs) for avoiding the use of toxic reducing agents. In this work, an antimicrobial material by in situ synthesizing AgNPs within 3D-printed collagen-based scaffolds (Col-Ag) was developed. By modifying the concentration of AgNO (0.

View Article and Find Full Text PDF

In recent years, controlled release of drugs has posed numerous challenges with the aim of optimizing parameters such as the release of the suitable quantity of drugs in the right site at the right time with the least invasiveness and the greatest possible automation. Some of the factors that challenge conventional drug release include long-term treatments, narrow therapeutic windows, complex dosing schedules, combined therapies, individual dosing regimens, and labile active substance administration. In this sense, the emergence of micro-devices that combine mechanical and electrical components, so called micro-electro-mechanical systems (MEMS) can offer solutions to these drawbacks.

View Article and Find Full Text PDF

The evaporation of water droplets on surfaces is a ubiquitous phenomenon in nature and has critical importance in a broad range of technical applications. Here, we show a substantial enhancement of liquid evaporation rate when droplets are on nanoporous thin film surfaces. We also reveal how this nanopore-enhanced evaporation leads to counterintuitive phenomena: cooler or more saline water droplets evaporate faster.

View Article and Find Full Text PDF

The development of artificial nanosystems that mimic directional water-collecting ability of evolved biological surfaces is eagerly awaited. Here we report a new type of addressable water collection that is induced by coupling both vapor gradients, like a road drawn, and the temperature-tuned condensation in nanopores as step signals. What distinguishes the motion described here from the motions reported earlier is the fact that neither bulk liquid infiltration nor displacement of droplet is required.

View Article and Find Full Text PDF