Angew Chem Int Ed Engl
August 2024
Parahydrogen-induced polarization (PHIP) is an inexpensive way to produce hyperpolarized molecules with polarization levels of >10 % in the solution-state, but is strongly limited in generality since it requires chemical reactions/ interactions with H. Here we report a new method to widen the scope of PHIP hyperpolarization: a source molecule is produced via PHIP with high C polarization, and precipitated out of solution together with a target species. Spin diffusion within the solid carries the polarization onto C spins of the target, which can then be dissolved for solution-state applications.
View Article and Find Full Text PDFHyperpolarization techniques increase nuclear spin polarization by more than four orders of magnitude, enabling metabolic MRI. Even though hyperpolarization has shown clear value in clinical studies, the complexity, cost and slowness of current equipment limits its widespread use. Here, a polarization procedure of [1- C]pyruvate based on parahydrogen-induced polarization by side-arm hydrogenation (PHIP-SAH) in an automated polarizer is demonstrated.
View Article and Find Full Text PDFCarbon-13 hyperpolarized pyruvate is about to become the next-generation contrast agent for molecular magnetic resonance imaging of cancer and other diseases. Here, efficient and rapid pyruvate hyperpolarization is achieved via signal amplification by reversible exchange (SABRE) with parahydrogen through synergistic use of substrate deuteration, alternating, and static microtesla magnetic fields. Up to 22 and 6% long-lasting C polarization ( = 3.
View Article and Find Full Text PDFWe present a versatile method for the preparation of hyperpolarized [1-C]fumarate as a contrast agent for preclinical MRI, using parahydrogen-induced polarization (PHIP). To benchmark this process, we compared a prototype PHIP polarizer to a state-of-the-art dissolution dynamic nuclear polarization (d-DNP) system. We found comparable polarization, volume, and concentration levels of the prepared solutions, while the preparation effort is significantly lower for the PHIP process, which can provide a preclinical dose every 10 min, opposed to around 90 min for d-DNP systems.
View Article and Find Full Text PDFNanostructuring of a bulk material is used to change its mechanical, optical, and electronic properties and to enable many new applications. We present a scalable fabrication technique that enables the creation of densely packed diamond nanopillars for quantum technology applications. The process yields tunable feature sizes without the employment of lithographic techniques.
View Article and Find Full Text PDFNuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T).
View Article and Find Full Text PDF