The sequential solid/gas single-crystal to single-crystal reaction of [Rh(CyP(CH)PCy)(COD)][BAr ] (COD = cyclooctadiene) with H or D was followed in situ by solid-state P{H} NMR spectroscopy (SSNMR) and ex situ by solution quenching and GC-MS. This was quantified using a two-step Johnson-Mehl-Avrami-Kologoromov (JMAK) model that revealed an inverse isotope effect for the second addition of H, that forms a σ-alkane complex [Rh(CyP(CH)PCy)(COA)][BAr ]. Using D, a temporal window is determined in which a structural solution for this σ-alkane complex is possible, which reveals an η,η-binding mode to the Rh(I) center, as supported by periodic density functional theory (DFT) calculations.
View Article and Find Full Text PDFKetone testing is an important element of the self-management of illness in type 1 diabetes. The aim of the present study was to see if a breath test for acetone could be used to predict quantitatively the levels of the ketone betahydroxybutyrate in the blood of those with type 1 diabetes, and thus be used as an alternative to capillary testing for ketones. Simultaneous capillary ketones and breath acetone were measured in 72 individuals with type 1 diabetes attending a diabetes clinic and on 9 individuals admitted to hospital with diabetic ketoacidosis.
View Article and Find Full Text PDFInteractions between biomolecules control the processes of life in health and their malfunction in disease, making their characterization and quantification essential. Immobilization- and label-free analytical techniques are desirable because of their simplicity and minimal invasiveness, but they struggle with quantifying tight interactions. Here, we show that mass photometry can accurately count, distinguish by molecular mass, and thereby reveal the relative abundances of different unlabelled biomolecules and their complexes in mixtures at the single-molecule level.
View Article and Find Full Text PDFThe cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision.
View Article and Find Full Text PDFOligomeric proteins assemble with exceptional selectivity, even in the presence of closely related proteins, to perform their cellular roles. We show that most proteins related by gene duplication of an oligomeric ancestor have evolved to avoid hetero-oligomerization and that this correlates with their acquisition of distinct functions. We report how coassembly is avoided by two oligomeric small heat-shock protein paralogs.
View Article and Find Full Text PDFThe periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott-Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2016
The paramagnetic phase of the one-band Hubbard model is studied at zero-temperature, within the framework of dynamical mean-field theory, and for general particle-hole asymmetry where a doping-induced Mott transition occurs. Our primary focus is the Mott insulator (MI) phase, and our main aim to establish what can be shown exactly about it. To handle the locally doubly-degenerate MI requires two distinct self-energies, which reflect the broken symmetry nature of the phase and together determine the standard single self-energy.
View Article and Find Full Text PDFWe study theoretically a triangular cluster of three magnetic impurities, hybridizing locally with conduction electrons of a metallic host. Such a cluster is the simplest to exhibit frustration, an important generic feature of many complex molecular systems in which different interactions compete. Here, low-energy doublet states of the trimer are favored by effective exchange interactions produced by strong electronic repulsion in localized impurity orbitals.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2009
The local moment approach is extended to the orbitally degenerate (SU(2N)) Anderson impurity model (AIM). Single-particle dynamics are obtained over the full range of energy scales, focusing on particle-hole symmetry in the strongly-correlated regime where the onsite Coulomb interaction leads to many-body Kondo physics with entangled spin and orbital degrees of freedom. The approach captures many-body broadening of the Hubbard satellites and recovers the correct exponential vanishing of the Kondo scale for all N, and its universal scaling spectra are found to be in very good agreement with numerical renormalization group (NRG) results.
View Article and Find Full Text PDFThis paper provides a theoretical description of sequential tunneling transport and spectroscopy, in carbon nanotube quantum dots weakly tunnel coupled to metallic leads under a voltage bias. The effects of Coulomb blockade charging, spin-orbit fine structure, and orbital- and spin-Zeeman effects arising from coupling to applied magnetic fields are considered; and the dependence of the conductance upon applied gate voltage, bias voltage, and magnetic fields is determined. The work is motivated by recent experiments on ultraclean carbon nanotube dots [Kuemmeth et al.
View Article and Find Full Text PDFWe present numerical renormalization group calculations for the zero-bias conductance of quantum dots made from semiconducting carbon nanotubes. These explain and reproduce the thermal evolution of the conductance for different groups of orbitals, as the dot-lead tunnel coupling is varied and the system evolves from correlated Kondo behavior to more weakly correlated regimes. For integer fillings N=1, 2, 3 of an SU(4) model, we find universal scaling behavior of the conductance that is distinct from the standard SU(2) universal conductance, and concurs quantitatively with experiment.
View Article and Find Full Text PDFWe investigate two equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. With increasing interdot coupling, a rich range of behavior is uncovered: first a crossover from spin- to charge-Kondo physics, via an intermediate SU(4) state with entangled spin and charge degrees of freedom, followed by a quantum phase transition of Kosterlitz-Thouless type to a non-Fermi-liquid "charge-ordered" phase with finite residual entropy and anomalous transport properties. Physical arguments and numerical renormalization group methods are employed to obtain a detailed understanding of the problem.
View Article and Find Full Text PDF