DNA quadruplex structures provide an additional layer of regulatory control in genome maintenance and gene expression and are widely used in nanotechnology. We report the discovery of an unprecedented tetrastranded structure formed from a native G-rich DNA sequence originating from the telomeric region of Caenorhabditis elegans. The structure is defined by multiple properties that distinguish it from all other known DNA quadruplexes.
View Article and Find Full Text PDFCytosine-rich DNA regions can form four-stranded structures based on hemi-protonated C.C+ pairs, called i-motifs (iMs). Using CD, UV absorption, NMR spectroscopy, and DSC calorimetry, we show that model (CnT3)3Cn (Cn) sequences adopt iM under neutral or slightly alkaline conditions for n > 3.
View Article and Find Full Text PDFGuanine quadruplexes (G4s) are noncanonical forms of nucleic acids that are frequently found in genomes. The stability of G4s depends, among other factors, on the number of G-tetrads. Three- or four-tetrad G4s and antiparallel two-tetrad G4s have been characterized experimentally; however, the existence of an intramolecular (i.
View Article and Find Full Text PDFWe recently showed that Saccharomyces cerevisiae telomeric DNA can fold into an unprecedented pseudocircular G-hairpin (PGH) structure. However, the formation of PGHs in the context of extended sequences, which is a prerequisite for their function in vivo and their applications in biotechnology, has not been elucidated. Here, we show that despite its 'circular' nature, PGHs tolerate single-stranded (ss) protrusions.
View Article and Find Full Text PDFThe ends of eukaryotic chromosomes typically contain a 3' ssDNA G-rich protrusion (G-overhang). This overhang must be protected against detrimental activities of nucleases and of the DNA damage response machinery and participates in the regulation of telomerase, a ribonucleoprotein complex that maintains telomere integrity. These functions are mediated by DNA-binding proteins, such as Cdc13 in , and the propensity of G-rich sequences to form various non-B DNA structures.
View Article and Find Full Text PDFIn this study, we report the first atomic resolution structure of a stable G-hairpin formed by a natively occurring DNA sequence. An 11-nt long G-rich DNA oligonucleotide, 5'-d(GTGTGGGTGTG)-3', corresponding to the most abundant sequence motif in irregular telomeric DNA from Saccharomyces cerevisiae (yeast), is demonstrated to adopt a novel type of mixed parallel/antiparallel fold-back DNA structure, which is stabilized by dynamic G:G base pairs that transit between N1-carbonyl symmetric and N1-carbonyl, N7-amino base-pairing arrangements. Although the studied sequence first appears to possess a low capacity for base pairing, it forms a thermodynamically stable structure with a rather complex topology that includes a chain reversal arrangement of the backbone in the center of the continuous G-tract and 3'-to-5' stacking of the terminal residues.
View Article and Find Full Text PDF