Publications by authors named "Martin Fisk"

In additive manufacturing, the presence of residual stresses in produced parts is a well-recognized phenomenon. These residual stresses not only elevate the risk of crack formation but also impose limitations on in-service performance. Moreover, it can distort printed parts if released, or in the worst case even cause a build to fail due to collision with the powder scraper.

View Article and Find Full Text PDF

Metallic glasses exhibit unique mechanical properties. For metallic glass composites (MGC), composed of dispersed nanocrystalline phases in an amorphous matrix, these properties can be enhanced or deteriorated depending on the volume fraction and size distribution of the crystalline phases. Understanding the evolution of crystalline phases during devitrification of bulk metallic glasses upon heating is key to realizing the production of these composites.

View Article and Find Full Text PDF

Decorated vesicles in deep, seafloor basalts form abiotically, but show at least four life-analogous features, which makes them a candidate for origin of life research. These features are a physical enclosure, carbon-assimilatory catalysts, semi-permeable boundaries, and a source of usable energy. The nanometer-to-micron-sized spherules on the inner walls of decorated vesicles are proposed to function as mineral proto-enzymes.

View Article and Find Full Text PDF

The ancient origins of metabolism may be rooted deep in oceanic crust, and these early metabolisms may have persisted in the habitable thermal anoxic aquifer where conditions remain similar to those when they first appeared. The Wood-Ljungdahl pathway for acetogenesis is a key early biosynthetic pathway with the potential to influence ocean chemistry and productivity, but its contemporary role in oceanic crust is not well established. Here, we describe the genome of a novel acetogen from a thermal suboceanic aquifer olivine biofilm in the basaltic crust of the Juan de Fuca Ridge (JdFR) whose genome suggests it may utilize an ancient chemosynthetic lifestyle.

View Article and Find Full Text PDF

To predict the final geometry in thermo-mechanical processes, the use of modeling tools is of great importance. One important part of the modeling process is to describe the response correctly. A previously published mechanism-based flow stress model has been further developed and adapted for the nickel-based superalloys, alloy 625, and alloy 718.

View Article and Find Full Text PDF
Article Synopsis
  • Earth's largest aquifer ecosystem is found in the igneous oceanic crust, where chemosynthesis and water-rock reactions supply carbon and energy for a thriving deep biosphere.
  • The study focused on understanding the energy and carbon metabolisms in the thermal basaltic aquifer, finding that the predominant carbon fixation pathway was the Wood-Ljungdahl pathway, particularly in the bacteria identified.
  • Results indicate that anaerobic processes like sulfate reduction and nitrogen fixation are occurring, highlighting the potential for ancient forms of metabolism to persist in modern suboceanic aquifers.
View Article and Find Full Text PDF

We propose a model whereby microscopic tunnels form in basalt glass in response to a natural proton flux from seawater into the glass. This flux is generated by the alteration of the glass as protons from water replace cations in the glass. In our proton gradient model, cells are gateways through which protons enter and alter the glass and through which cations leave the glass.

View Article and Find Full Text PDF

The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp.

View Article and Find Full Text PDF

The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.

View Article and Find Full Text PDF

The European Space Agency will launch the ExoMars mission in 2016 with a primary goal of surveying the martian subsurface for evidence of organic material. We have recently investigated the utility of including either a 365 nm light-emitting diode or a 375 nm laser light source in the ExoMars rover panoramic camera (PanCam). Such a modification would make it feasible to monitor rover drill cuttings optically for the fluorescence signatures of aromatic organic molecules and map the distribution of polycyclic aromatic hydrocarbons (PAHs) as a function of depth to the 2 m limit of the ExoMars drill.

View Article and Find Full Text PDF

We used molecular techniques to analyze basalts of varying ages that were collected from the East Pacific Rise, 9 degrees N, from the rift axis of the Juan de Fuca Ridge and from neighboring seamounts. Cluster analysis of 16S rDNA terminal restriction fragment polymorphism data revealed that basalt endoliths are distinct from seawater and that communities clustered, to some degree, based on the age of the host rock. This age-based clustering suggests that alteration processes may affect community structure.

View Article and Find Full Text PDF

We examined the phylogenetic diversity of microbial communities associated with marine basalts, using over 300 publicly available 16S rDNA sequences and new sequence data from basalt enrichment cultures. Phylogenetic analysis provided support for 11 monophyletic clades originating from ocean crust (sediment, basalt and gabbro). Seven of the ocean crust clades (OCC) are bacterial, while the remaining four OCC are in the Marine Group I (MGI) Crenarchaeota.

View Article and Find Full Text PDF