Publications by authors named "Martin F. Hentemann"

The phosphoinositide 3-kinase (PI3K) pathway is aberrantly activated in many disease states, including tumor cells, either by growth factor receptor tyrosine kinases or by the genetic mutation and amplification of key pathway components. A variety of PI3K isoforms play differential roles in cancers. As such, the development of PI3K inhibitors from novel compound classes should lead to differential pharmacological and pharmacokinetic profiles and allow exploration in various indications, combinations, and dosing regimens.

View Article and Find Full Text PDF

Thymidylate kinase (TMK), an essential enzyme in bacterial DNA biosynthesis, is an attractive therapeutic target for the development of novel antibacterial agents, and we continue to explore TMK inhibitors with improved potency, protein binding, and pharmacokinetic potential. A structure-guided design approach was employed to exploit a previously unexplored region in Staphylococcus aureus TMK via novel interactions. These efforts produced compound 39, with 3 nM IC50 against S.

View Article and Find Full Text PDF

Thymidylate kinase (TMK) is an essential enzyme in bacterial DNA synthesis. The deoxythymidine monophosphate (dTMP) substrate binding pocket was targeted in a rational-design, structure-supported effort, yielding a unique series of antibacterial agents showing a novel, induced-fit binding mode. Lead optimization, aided by X-ray crystallography, led to picomolar inhibitors of both Streptococcus pneumoniae and Staphylococcus aureus TMK.

View Article and Find Full Text PDF

There is an urgent need for new antibacterials that pinpoint novel targets and thereby avoid existing resistance mechanisms. We have created novel synthetic antibacterials through structure-based drug design that specifically target bacterial thymidylate kinase (TMK), a nucleotide kinase essential in the DNA synthesis pathway. A high-resolution structure shows compound TK-666 binding partly in the thymidine monophosphate substrate site, but also forming new induced-fit interactions that give picomolar affinity.

View Article and Find Full Text PDF

The total synthesis of racemic rishirilide B has been accomplished. The synthesis serves to define the relative relationships of its stereogenic centers. Also, starting with readily available chiral pool, ent-rishirilide B was synthesized, thereby demonstrating that natural configuration of rishirilide B.

View Article and Find Full Text PDF

Theoretical studies of stereoselectivity have been carried out with B3LYP and MP2 calculations. The high endo selectivity of hetero-Diels-Alder reactions of ortho-xylylenes with acetaldehydes is shown to result from attractive CH-pi interactions between alkyl groups of the aldehyde and the aromatic ring in the transition states of the reaction. For the hetero-Diels-Alder reactions of ortho-xylylenes with benzaldehyde, the stereoselectivity is shown to be mainly governed by the attractive pi-pi interactions between the phenyl rings of the benzaldehyde and the ortho-xylylene.

View Article and Find Full Text PDF